Evaluation of Variability in Macular Thickness in Primary Open Angle Glaucoma: A Spectral Domain Optical Coherence Tomography-Based Study
Primary Open Angle Glaucoma: A Spectral Domain Optical Coherence Tomography-Based Study
DOI:
https://doi.org/10.54393/pjhs.v6i5.3035Keywords:
Glaucoma, Macular Thickness, Spectral Domain Optical Coherence Tomography, Primary Open-Angle GlaucomaAbstract
Globally, glaucoma, especially primary open-angle glaucoma (POAG), is one of the leading causes of blindness. This disease is connected to damage of the optic nerve head, death of retinal ganglion cells and visual field abnormalities. Objectives: To check the macular thickness and total macular volume using spectral-domain optical coherence tomography (SD-OCT) among patients of POAG and subjects without glaucoma. Methods: The observational case-control study, where 40 participants had POAG and 40 participants the same age did not. Only the right eye or only the left eye from each subject was examined in the study. All subjects had a thorough check of their eyes which included history, eye chart testing, slit-lamp examination, dilated fundus inspection, gonioscopy and measuring intraocular pressure (IOP). Visual fields were assessed using the Humphrey Field Analyzer. Macular thickness (MT) was analyzed with SD-OCT using OCT Spectralis. Parameters evaluated were macular inner thickness (MIT), macular outer thickness (MOT), macular central thickness (MCT) and macular total volume (MTV). Results: Patients with POAG exhibited markedly reduced MTV, MIT and MOT in comparison to healthy controls, with the greatest decline observed in the temporal as well as the inferior quadrants. These observations confirm that structural differences in the macular parameters are correlated with glaucoma and can aid in early diagnosis and monitoring progression. Conclusion: This study emphasizes the diagnostic utility of SD-OCT in determining macular thickness variability in individuals with POAG. Our findings show that macular thickness is much lower in glaucomatous eyes than in healthy controls, with distinct patterns of regional thinning indicating retinal ganglion cell vulnerability.
References
Michels TC and Ivan O. Glaucoma: Diagnosis and Management. American Family Physician. 2023 Mar; 107(3): 253-62.
Stein JD, Khawaja AP, Weizer JS. Glaucoma in Adults—Screening, Diagnosis, and Management: A Review. Journal of American Medical Association. 2021 Jan; 325(2): 164-74. doi: 10.1001/jama.2020.21899.
Zhang N, Wang J, Li Y, Jiang B. Prevalence of Primary Open Angle Glaucoma in the Last 20 Years: A Meta-Analysis and Systematic Review. Scientific Reports. 2021 Jul; 11(1): 13762. doi: 10.1038/s41598-021-92971-w.
Joshi P, Dangwal A, Guleria I, Kothari S, Singh P, Kalra JM et al. Glaucoma in Adults-Diagnosis, Management, and Prediagnosis to End-Stage, Categorizing Glaucoma's Stages: A Review. Journal of Current Glaucoma Practice. 2022 Sep; 16(3): 170. doi: 10.5005/jp-journals-10078-1388.
Liu WW, McClurkin M, Tsikata E, Hui PC, Elze T, Celebi AR et al. Three-dimensional Neuroretinal Rim Thickness and Visual Fields in Glaucoma: A Broken-Stick Model. Journal of Glaucoma. 2020 Oct; 29(10): 952-63. doi: 10.1097/IJG.0000000000001604.
Ghita AM, Iliescu DA, Ghita AC, Ilie LA, Otobic A. Ganglion Cell Complex Analysis: Correlations with Retinal Nerve Fiber Layer on Optical Coherence Tomography. Diagnostics. 2023 Jan; 13(2): 266. doi: 10.3390/diagnostics13020266.
Liu Z, Saeedi O, Zhang F, Villanueva R, Asanad S, Agrawal A et al. Quantification of Retinal Ganglion Cell Morphology in Human Glaucomatous Eyes. Investigative Ophthalmology and Visual Science. 2021 Mar; 62(3): 34-. doi: 10.1167/iovs.62.3.34.
Wu Y, Cun Q, Tao Y, Yang W, Wei J, Fan D, Zhang Y, Chen Q, Zhong H. Evaluation of Macular and Retinal Ganglion Cell Count Estimates for Detecting and Staging Glaucoma. Frontiers in Medicine. 2021 Oct; 8: 740761. doi: 10.3389/fmed.2021.740761.
Chua J, Tan B, Ke M, Schwarzhans F, Vass C, Wong D et al. Diagnostic Ability of Individual Macular Layers by Spectral-Domain OCT in Different Stages of Glaucoma. Ophthalmology Glaucoma. 2020 Sep; 3(5): 314-26. doi: 10.1016/j.ogla.2020.04.003.
Sharma A, Agarwal P, Sathyan P, Saini VK. Macular Thickness Variability in Primary Open Angle Glaucoma Patients using Optical Coherence Tomography. Journal of Current Glaucoma Practice. 2014 Jan; 8(1): 10. doi: 10.5005/jp-journals-10008-1154.
Fujihara FM, de Arruda Mello PA, Lindenmeyer RL, Pakter HM, Lavinsky J, Benfica CZ et al. Individual Macular Layer Evaluation with Spectral Domain Optical Coherence Tomography in Normal and Glaucomatous Eyes. Clinical Ophthalmology. 2020 Jun: 1591-9. doi: 10.2147/OPTH.S256755.
Mahabadi N, Zeppieri M, Tripathy K. Open angle glaucoma. In Stat Pearls [Internet]. 2024 Mar.
Hou H, Moghimi S, Kamalipour A, Ekici E, Oh WH, Proudfoot JA et al. Macular Thickness and Microvasculature Loss in Glaucoma Suspect Eyes. Ophthalmology Glaucoma. 2022 Mar; 5(2): 170-8. doi: 10.1016/j.ogla.2021.07.009.
Antwi-Boasiako K, Carter-Dawson L, Harwerth R, Gondo M, Patel N. The Relationship Between Macula Retinal Ganglion Cell Density and Visual Function in the Nonhuman Primate. Investigative Ophthalmology and Visual Science. 2021 Jan; 62(1): 5-. doi: 10.1167/iovs.62.1.5.
Mohammadzadeh V, Fatehi N, Yarmohammadi A, Lee JW, Sharifipour F, Daneshvar R, Caprioli J, Nouri-Mahdavi K. Macular Imaging with Optical Coherence Tomography in Glaucoma. Survey of Ophthalmology. 2020 Nov; 65(6): 597-638. doi: 10.1016/j.survophthal.2020.03.002.
Yadav VK, Rana J, Singh A, Singh KJ, Kumar S, Singh S. Evaluation of Ganglion Cell-Inner Plexiform Layer Thickness in the Diagnosis of Pre-Perimetric Glaucoma and Comparison to Retinal Nerve Fiber Layers. Indian Journal of Ophthalmology. 2024 Mar; 72(3): 357-62. doi: 10.4103/IJO.IJO_939_23.
Mehta B, Ranjan S, Sharma V, Singh N, Raghav N, Bhargava R et al. The Discriminatory Ability of Ganglion Cell Inner Plexiform Layer Complex Thickness in Patients with Preperimetric Glaucoma. Journal of Current Ophthalmology. 2023 Jul; 35(3): 231-7. doi: 10.4103/joco.joco_124_23.
San Pedro MJ, Sosuan GM, Yap-Veloso MI. Correlation of Macular Ganglion Cell Layer+ Inner Plexiform Layer (GCL+ IPL) and Circumpapillary Retinal Nerve Fiber Layer (cRNFL) Thickness in Glaucoma Suspects and Glaucomatous Eyes. Clinical Ophthalmology. 2024 Dec: 2313-25. doi: 10.2147/OPTH.S439501.
Nowroozzadeh MH, Khatami K, Estedlal A, Emadi Z, Zarei A, Razeghinejad R. Variance in the Macular Sublayers’ Volume as A Diagnostic Tool for Primary Open-Angle Glaucoma. International Ophthalmology. 2023 Jan; 43(1): 261-9. doi: 10.1007/s10792-022-02425-z.
Mohammadzadeh V, Cheng M, Zadeh SH, Edalati K, Yalzadeh D, Caprioli J et al. Central Macular Topographic and Volumetric Measures: New Biomarkers for Detection of Glaucoma. Translational Vision Science and Technology. 2022 Jul; 11(7): 25-. doi: 10.1167/tvst.11.7.25.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Pakistan Journal of Health Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open-access journal and all the published articles / items are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For comments