Synthesis, Characterization and Drug Release Study of Novel Guided Tissue Regeneration Membranes Containing Drug Loaded Chitosan Nanoparticles

Tissue Regeneration Membranes Containing Chitosan Nanoparticles

Authors

  • Muhammad Asad Ghaffar Department of Dental Materials, Army Medical College/ National University of Medical Sciences, Islamabad, Pakistan
  • Maleeha Nayyer Department of Dental Materials, Army Medical College/ National University of Medical Sciences, Islamabad, Pakistan
  • Muhammad Kaleem 1Department of Dental Materials, Army Medical College/ National University of Medical Sciences, Islamabad, Pakistan
  • Muhammad Azhar Department of Oral Biology, Army Medical College/ National University of Medical Sciences, Islamabad, Pakistan
  • Asma Tufail Shah Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
  • Safi Ullah Khan Department of Oral Biology, Multan Medical and Dental College, Multan, Pakistan

DOI:

https://doi.org/10.54393/pjhs.v5i03.795

Keywords:

Chitosan Nanoparticles, GTR Membrane, Drug Loaded Nanoparticles, Ciprofloxacin

Abstract

Periodontitis is an inflammatory disease which can cause the destruction of the supporting tissues of the tooth leading to tooth loss. The guided tissue regeneration is considered as a gold standard for its treatment but the re-infection of surgical site limits its overall success. Objective: To synthesize novel monolayer guided tissue regeneration (GTR) membrane containing drug loaded chitosan nanoparticles and to evaluate the drug release from the synthesized GTR membranes. Methods: The chitosan nanoparticles containing ciprofloxacin were synthesized by the ionotropic gelation method and these synthesized nanoparticles were added into chitosan GTR membrane fabricated by the freeze gelation method. For comparison GTR membrane was prepared as a control by freeze gelation method in which the drug was added directly. The prepared membranes were characterized by the SEM and FTIR. The drug release was measured from the membrane samples in the phosphate buffer saline (PBS) at 1, 3, 5, 7 and 9 days. Results: The GTR membrane containing the ciprofloxacin loaded chitosan nanoparticles showed fast drug release as compared to the membrane in which the ciprofloxacin was added directly. Conclusions: The inclusion of antibiotic loaded chitosan nanoparticles can increase the drug release from GTR membrane.

References

Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. The Lancet. 2005 Nov; 366(9499): 1809-20. doi: 10.1016/S0140-6736(05)67728-8. DOI: https://doi.org/10.1016/S0140-6736(05)67728-8

Bottino MC, Thomas V, Schmidt G, Vohra YK, Chu TM, Kowolik MJ, et al. Recent advances in the development of GTR/GBR membranes for periodontal regeneration—A materials perspective. Dental Materials. 2012 Jul; 28(7): 703-21. doi: 10.1016/j.dental.2012.04.022. DOI: https://doi.org/10.1016/j.dental.2012.04.022

Meyle J and Chapple I. Molecular aspects of the pathogenesis of periodontitis. Periodontology 2000. 2015 Oct; 69(1): 7-17. doi: 10.1111/prd.12104. DOI: https://doi.org/10.1111/prd.12104

American Academy of Periodontology. Treatment of plaque-induced gingivitis, chronic periodontitis, and other clinical conditions. Journal of Periodontology. 2001 Sep; 72(12): 1790-800. doi: 10.1902/jop.2001.72.12.1790. DOI: https://doi.org/10.1902/jop.2001.72.12.1790

Darveau RP, Tanner A, Page RC. The microbial challenge in periodontitis. Periodontology 2000. 1997 Jun; 14(1): 12-32. doi: 10.1111/j.1600-0757.1997.tb00190.x. DOI: https://doi.org/10.1111/j.1600-0757.1997.tb00190.x

Kostopoulos L and Karring T. Susceptibility of GTR‐regenerated periodontal attachment to ligature‐induced periodontitis: An experiment in the monkey. Journal of Clinical Periodontology. 2004 May; 31(5): 336-40. doi: 10.1111/j.1600-051X.2004.00487.x. DOI: https://doi.org/10.1111/j.1600-051X.2004.00487.x

Sculean A, Nikolidakis D, Schwarz F. Regeneration of periodontal tissues: combinations of barrier membranes and grafting materials–biological foundation and preclinical evidence: a systematic review. Journal of Clinical Periodontology. 2008 Sep; 35: 106-16. doi: 10.1111/j.1600-051X.2008.01263.x. DOI: https://doi.org/10.1111/j.1600-051X.2008.01263.x

Nyman S, Lindhe J, Karring T, Rylander H. New attachment following surgical treatment of human periodontal disease. Journal of Clinical Periodontology. 1982 Aug; 9(4): 290-6. doi: 10.1111/j.1600-051X.1982.tb02095.x. DOI: https://doi.org/10.1111/j.1600-051X.1982.tb02095.x

Taba Jr M, Jin Q, Sugai JV, Giannobile WV. Current concepts in periodontal bioengineering. Orthodontics & Craniofacial Research. 2005 Nov; 8(4): 292-302. doi: 10.1111/j.1601-6343.2005.00352.x. DOI: https://doi.org/10.1111/j.1601-6343.2005.00352.x

Bottino MC, Jose MV, Thomas V, Dean DR, Janowski GM. Freeze-dried acellular dermal matrix graft: effects of rehydration on physical, chemical, and mechanical properties. Dental Materials. 2009 Sep; 25(9): 1109-15. doi: 10.1016/j.dental.2009.03.007. DOI: https://doi.org/10.1016/j.dental.2009.03.007

Campoccia D, Montanaro L, Arciola CR. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials. 2013 Nov; 34(34): 8533-54. doi: 10.1016/j.biomaterials.2013.07.089. DOI: https://doi.org/10.1016/j.biomaterials.2013.07.089

Lin WC, Yao C, Huang TY, Cheng SJ, Tang CM. Long-term in vitro degradation behavior and biocompatibility of polycaprolactone/cobalt-substituted hydroxyapatite composite for bone tissue engineering. Dental Materials. 2019 May; 35(5): 751-62. doi: 10.1016/j.dental.2019.02.023. DOI: https://doi.org/10.1016/j.dental.2019.02.023

Bottino MC, Arthur RA, Waeiss RA, Kamocki K, Gregson KS, Gregory RL. Biodegradable nanofibrous drug delivery systems: effects of metronidazole and ciprofloxacin on periodontopathogens and commensal oral bacteria. Clinical Oral Investigations. 2014 Dec; 18: 2151-8. doi: 10.1007/s00784-014-1201-x. DOI: https://doi.org/10.1007/s00784-014-1201-x

Kong LX, Peng Z, Li SD, Bartold PM. Nanotechnology and its role in the management of periodontal diseases. Periodontology 2000. 2006 Feb; 40(1): 184. doi: 10.1111/j.1600-0757.2005.00143.x. DOI: https://doi.org/10.1111/j.1600-0757.2005.00143.x

Rotar O, Tenedja K, Arkhelyuk A, Rotar VI, Davidencko IS, Fediv VI. Preparation of chitosan nanoparticles loaded with glutathione for diminishing tissue ischemia-reperfusion injury. International Journal of Advanced Engineering and Nano Technology. 2014 May; 1(6): 19-23.

Yuan Z, Ye Y, Gao F, Yuan H, Lan M, Lou K, et al. Chitosan-graft-β-cyclodextrin nanoparticles as a carrier for controlled drug release. International Journal of Pharmaceutics. 2013 Mar; 446(1-2): 191-8. doi: 10.1016/j.ijpharm.2013.02.024. DOI: https://doi.org/10.1016/j.ijpharm.2013.02.024

El-Alfy EA, El-Bisi MK, Taha GM, Ibrahim HM. Preparation of biocompatible chitosan nanoparticles loaded by tetracycline, gentamycin and ciprofloxacin as novel drug delivery system for improvement the antibacterial properties of cellulose based fabrics. International Journal of Biological Macromolecules. 2020 Oct; 161: 1247-60. doi: 10.1016/j.ijbiomac.2020.06.118. DOI: https://doi.org/10.1016/j.ijbiomac.2020.06.118

Liu S, Yang S, Ho PC. Intranasal administration of carbamazepine-loaded carboxymethyl chitosan nanoparticles for drug delivery to the brain. Asian Journal of Pharmaceutical Sciences. 2018 Jan; 13(1): 72-81. doi: 10.1016/j.ajps.2017.09.001. DOI: https://doi.org/10.1016/j.ajps.2017.09.001

Yang HC and Hon MH. The effect of the molecular weight of chitosan nanoparticles and its application on drug delivery. Microchemical Journal. 2009 May; 92(1): 87-91. doi: 10.1016/j.microc.2009.02.001. DOI: https://doi.org/10.1016/j.microc.2009.02.001

Qashqoosh MT, Alahdal FA, Manea YK, Zakariya SM, Naqvi S. Synthesis, characterization and spectroscopic studies of surfactant loaded antiulcer drug into Chitosan nanoparticles for interaction with bovine serum albumin. Chemical Physics. 2019 Nov; 527: 110462. doi: 10.1016/j.chemphys.2019.110462. DOI: https://doi.org/10.1016/j.chemphys.2019.110462

Jamil B, Habib H, Abbasi S, Nasir H, Rahman A, Rehman A, et al. Cefazolin loaded chitosan nanoparticles to cure multi drug resistant Gram-negative pathogens. Carbohydrate Polymers. 2016 Jan; 136: 682-91. doi: 10.1016/j.carbpol.2015.09.078. DOI: https://doi.org/10.1016/j.carbpol.2015.09.078

Ho MH, Hsieh CC, Hsiao SW, Thien DV. Fabrication of asymmetric chitosan GTR membranes for the treatment of periodontal disease. Carbohydrate Polymers. 2010 Mar; 79(4): 955-63. doi: 10.1016/j.carbpol.2009.10.031. DOI: https://doi.org/10.1016/j.carbpol.2009.10.031

Ma S, Adayi A, Liu Z, Li M, Wu M, Xiao L, et al. Asymmetric collagen/chitosan membrane containing minocycline-loaded chitosan nanoparticles for guided bone regeneration. Scientific Reports. 2016 Aug; 6(1): 31822. doi: 10.1038/srep31822. DOI: https://doi.org/10.1038/srep31822

Sahoo SU, Chakraborti CK, Mishra SC, Nanda UN, Naik S. FTIR and XRD investigations of some fluoroquinolones. 2011 Apr; 3(3): 165-70.

Pan Y, Li YJ, Zhao HY, Zheng JM, Xu H, Wei G, et al. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. International Journal of Pharmaceutics. 2002 Dec; 249(1-2): 139-47. doi: 10.1016/S0378-5173(02)00486-6. DOI: https://doi.org/10.1016/S0378-5173(02)00486-6

Yuan Q, Shah J, Hein SR, Misra RD. Controlled and extended drug release behavior of chitosan-based nanoparticle carrier. Acta Biomaterialia. 2010 Mar; 6(3): 1140-8. doi: 10.1016/j.actbio.2009.08.027. DOI: https://doi.org/10.1016/j.actbio.2009.08.027

Morgen M, Bloom C, Beyerinck R, Bello A, Song W, Wilkinson K, et al. Polymeric nanoparticles for increased oral bioavailability and rapid absorption using celecoxib as a model of a low-solubility, high-permeability drug. Pharmaceutical Research. 2012 Feb; 29: 427-40. doi: 10.1007/s11095-011-0558-7. DOI: https://doi.org/10.1007/s11095-011-0558-7

Owen GR, Jackson JK, Chehroudi B, Brunette DM, Burt HM. An in vitro study of plasticized poly (lactic‐co‐glycolic acid) films as possible guided tissue regeneration membranes: material properties and drug release kinetics. Journal of Biomedical Materials Research Part A. 2010 Dec; 95(3): 857-69. doi: 10.1002/jbm.a.32865. DOI: https://doi.org/10.1002/jbm.a.32865

He M, Xue J, Geng H, Gu H, Chen D, Shi R, et al. Fibrous guided tissue regeneration membrane loaded with anti-inflammatory agent prepared by coaxial electrospinning for the purpose of controlled release. Applied Surface Science. 2015 Apr; 335: 121-9. doi: 10.1016/j.apsusc.2015.02.037. DOI: https://doi.org/10.1016/j.apsusc.2015.02.037

Xue J, Niu Y, Gong M, Shi R, Chen D, Zhang L, et al. Electrospun microfiber membranes embedded with drug-loaded clay nanotubes for sustained antimicrobial protection. ACS Nano. 2015 Feb; 9(2): 1600-12. doi: 10.1021/nn506255e. DOI: https://doi.org/10.1021/nn506255e

Chen X, Xu C, He H. Electrospinning of silica nanoparticles-entrapped nanofibers for sustained gentamicin release. Biochemical and Biophysical Research Communications. 2019 Sep; 516(4): 1085-9. doi: 10.1016/j.bbrc.2019.06.163. DOI: https://doi.org/10.1016/j.bbrc.2019.06.163

Yar M, Farooq A, Shahzadi L, Khan AS, Mahmood N, Rauf A, et al. Novel meloxicam releasing electrospun polymer/ceramic reinforced biodegradable membranes for periodontal regeneration applications. Materials Science and Engineering: C. 2016 Jul; 64: 148-56. doi: 10.1016/j.msec.2016.03.072. DOI: https://doi.org/10.1016/j.msec.2016.03.072

Zhang H, Ma H, Zhang R, Wang K, Liu J. Construction and characterization of antibacterial PLGA/wool keratin/ornidazole composite membranes for periodontal guided tissue regeneration. Journal of Biomaterials Applications. 2020 Apr; 34(9): 1267-81. doi: 10.1177/0885328220901396. DOI: https://doi.org/10.1177/0885328220901396

Downloads

Published

2024-03-31

How to Cite

Ghaffar, M. A., Nayyer, M., Kaleem, M., Azhar, M., Shah, A. T., & Khan, S. U. (2024). Synthesis, Characterization and Drug Release Study of Novel Guided Tissue Regeneration Membranes Containing Drug Loaded Chitosan Nanoparticles: Tissue Regeneration Membranes Containing Chitosan Nanoparticles. Pakistan Journal of Health Sciences, 5(03), 44–49. https://doi.org/10.54393/pjhs.v5i03.795

Issue

Section

Original Article

Plaudit