Cellular and Molecular Mechanisms of Salivary Gland Development and Regeneration: Implications for Tissue Engineering and Regenerative Medicine

Salivary Gland Development and Regeneration

Authors

  • Zain-Ud-Din Ahmed Department of Operative Dentistry and Endodontics, Akhtar Saeed Medical and Dental College, Lahore, Pakistan
  • Maheen Rao Department of Operative Dentsistry and Endodontics, Akhtar Saeed Medical and Dental College, Lahore, Pakistan
  • Fatima Jawad Department of Pathology, Al-Aleem Medical College, Lahore, Pakistan
  • Safi Ullah Khan Department of Oral Biology, Multan Medical and Dental College, Multan, Pakistan
  • Taha Rehman Department of Oral and Maxillofacial Surgery, Armed Forces Institute of Dentistry, Rawalpindi, Pakistan
  • Majida Rahim Department of Oral and Maxillofacial Surgery, Foundation University School of Health Sciences, Islamabad, Pakistan

DOI:

https://doi.org/10.54393/pjhs.v5i12.1755

Keywords:

Regenerative Medicine, Stems Cells, Tissue Engineering, 3D Tissue Culturing, Artificial Salivary Glands

Abstract

Salivary glands are essential for oral health, but their function can be compromised by cancer, autoimmune disorders, infections, and physical traumas, severely impacting quality of life. There is currently no cure for salivary gland dysfunction, and treatment is symptomatic. Objective: To explore the cellular and molecular mechanisms involved in the development, maturation, and regeneration of salivary glands, with a focus on tissue engineering and regenerative medicine. Methods: A comprehensive review was conducted using PRISMA and information was fetched through PUBMED, EMBASE, Medline, and Google Scholar databases. Results: The FGF pathway, part of the growth factor family, plays a significant role in salivary gland homeostasis, while the Wnt pathway is crucial for gland maturation. Various receptors and signaling molecules are involved in the gland's functioning. Recent advancements in regenerative medicine have demonstrated that activating endogenous stem cells can lead to positive outcomes in restoring injured salivary glands. Technological advancements in 3D tissue culturing using patient cells have enabled the creation of functional artificial salivary gland organs. However, no cell line completely mimics natural salivary gland cells, and their inherent tumorigenic potential delays their therapeutic application. Conclusions: Understanding these mechanisms is vital for developing effective therapies. While recent advancements show promise, further research is necessary to create safe, accurate cell lines for therapeutic use. This knowledge is crucial for establishing therapeutic avenues that could potentially lead to direct regeneration, reconstruction, and replacement of functioning salivary glands.

References

Pillai S, Munguia-Lopez JG, Tran SD. Bioengineered Salivary Gland Microtissues─ A Review of 3D Cellular Models and their Applications. American Chemical Society Applied Bio Materials. 2024 Apr; 7(5): 2620-36. doi: 10.1021/acsabm.4c00028.

Almansoori AA, Kim B, Lee JH, Tran SD. Tissue engineering of oral mucosa and salivary gland: disease modeling and clinical applications. Micromachines. 2020 Nov; 11(12): 1066. doi: 10.3390/mi11121066.

Rose C and Olley RC. Patient preventive advice to mitigate signs and symptoms of tooth wear. Dental Update. 2024 Jun; 51(6): 422-6. doi: 10.12968/denu.2024.51.6.422.

Villa A, Wolff A, Narayana N, Dawes C, Aframian DJ, Lynge Pedersen AM et al. World Workshop on Oral Medicine VI: a systematic review of medication‐induced salivary gland dysfunction. Oral Diseases. 2016 Jul; 22(5): 365-82. doi: 10.1111/odi.12402.

Chery G. Understanding Sjögren's Syndrome as a Systemic Autoimmune Disorder. State University of New York at Albany; 2022.

Ferreira JN, Rungarunlert S, Urkasemsin G, Adine C, Souza GR. Three‐dimensional bioprinting nanotechnologies towards clinical application of stem cells and their secretome in salivary gland regeneration. Stem Cells International. 2016 Dec; 2016(1): 7564689. doi: 10.1155/2016/7564689.

Mercadante V, Jensen SB, Smith DK, Bohlke K, Bauman J, Brennan MT et al. Salivary gland hypofunction and/or xerostomia induced by nonsurgical cancer therapies: ISOO/MASCC/ASCO guideline. Journal of Clinical Oncology. 2021 Sep; 39(25): 2825-43. doi: 10.1200/JCO.21.01208.

Parisis D, Chivasso C, Perret J, Soyfoo MS, Delporte C. Current state of knowledge on primary Sjögren's syndrome, an autoimmune exocrinopathy. Journal of Clinical Medicine. 2020 Jul; 9(7): 2299. doi: 10.3390/jcm9072299.

Seo YJ, Lilliu MA, Abu Elghanam G, Nguyen TT, Liu Y, Lee JC et al. Cell culture of differentiated human salivary epithelial cells in a serum‐free and scalable suspension system: The salivary functional units model. Journal of Tissue Engineering and Regenerative Medicine. 2019 Sep; 13(9): 1559-70. doi: 10.1002/term.2908.

Baum BJ, Wang S, Cukierman E, Delporte C, Kagami H, Marmary Y et al. Re‐engineering the functions of a terminally differentiated epithelial cell in vivo. Annals of the New York Academy of Sciences. 1999 Jun; 875(1): 294-300. doi: 10.1111/j.1749-6632.1999.tb08512.x

Barrows CM, Wu D, Farach-Carson MC, Young S. Building a functional salivary gland for cell-based therapy: more than secretory epithelial acini. Tissue Engineering Part A. 2020 Dec; 26(23-24): 1332-48. doi: 10.1089/ten.tea.2020.0184.

Blitzer GC, Rogus-Pulia NM, Mattison RJ, Varghese T, Ganz O, Chappell R et al. Marrow-Derived Autologous Stromal Cells for the Restoration of Salivary Hypofunction (MARSH): Study protocol for a phase 1 dose-escalation trial of patients with xerostomia after radiation therapy for head and neck cancer: MARSH: Marrow-Derived Autologous Stromal Cells for the Restoration of Salivary Hypofunction. Cytotherapy. 2022 May; 24(5): 534-43. doi: 10.1016/j.jcyt.2021.11.003.

Adine C, Ng KK, Rungarunlert S, Souza GR, Ferreira JN. Engineering innervated secretory epithelial organoids by magnetic three-dimensional bioprinting for stimulating epithelial growth in salivary glands. Biomaterials. 2018 Oct; 180: 52-66. doi: 10.1016/j.biomaterials.2018.06.011.

Nam K, Wang CS, Maruyama CL, Lei P, Andreadis ST, Baker OJ. L1 peptide-conjugated fibrin hydrogels promote salivary gland regeneration. Journal of Dental Research. 2017 Jul; 96(7): 798-806. doi: 10.1177/0022034517695496.

Lombaert IM, Brunsting JF, Wierenga PK, Faber H, Stokman MA, Kok T et al. Rescue of salivary gland function after stem cell transplantation in irradiated glands. PLOS One. 2008 Apr; 3(4): e2063. doi: 10.1371/journal.pone.0002063.

Nanduri LS, Lombaert IM, Van Der Zwaag M, Faber H, Brunsting JF, Van Os RP et al. Salisphere derived c-Kit+ cell transplantation restores tissue homeostasis in irradiated salivary gland. Radiotherapy and Oncology. 2013 Sep; 108(3): 458-63. doi: 10.1016/j.radonc.2013.05.020.

Grønhøj C, Jensen DH, Vester-Glowinski P, Jensen SB, Bardow A, Oliveri RS et al. Safety and efficacy of mesenchymal stem cells for radiation-induced xerostomia: a randomized, placebo-controlled phase 1/2 trial (MESRIX). International Journal of Radiation Oncology* Biology* Physics. 2018 Jul; 101(3): 581-92. doi: 10.1016/j.ijrobp.2018.02.034.

Lynggaard CD, Grønhøj C, Jensen SB, Christensen R, Specht L, Andersen E et al. Long-term safety of treatment with autologous mesenchymal stem cells in patients with radiation-induced xerostomia: primary results of the MESRIX phase I/II randomized trial. Clinical Cancer Research. 2022 Jul; 28(13): 2890-7. doi: 10.1158/1078-0432.CCR-21-4520.

Ozdemir T, Fowler EW, Liu S, Harrington DA, Witt RL, Farach-Carson MC et al. Tuning hydrogel properties to promote the assembly of salivary gland spheroids in 3D. ACS Biomaterials Science & Engineering. 2016 Dec; 2(12): 2217-30. doi: 10.1021/acsbiomaterials.6b00419.

Shubin AD, Felong TJ, Schutrum BE, Joe DS, Ovitt CE, Benoit DS. Encapsulation of primary salivary gland cells in enzymatically degradable poly (ethylene glycol) hydrogels promotes acinar cell characteristics. Acta Biomaterialia. 2017 Mar; 50: 437-49. doi: 10.1016/j.actbio.2016.12.049.

Shimizu O, Yasumitsu T, Shiratsuchi H, Oka S, Watanabe T, Saito T et al. Immunolocalization of FGF-2,-7,-8,-10 and FGFR-1-4 during regeneration of the rat submandibular gland. Journal of Molecular Histology. 2015 Oct; 46: 421-9. doi: 10.1007/s10735-015-9631-6.

Hoffman MP, Kidder BL, Steinberg ZL, Lakhani S, Ho S, Kleinman HK et al. Gene expression profiles of mouse submandibular gland development: FGFR1 regulates branching morphogenesis in vitro through BMP-and FGF-dependent mechanisms. 2002 Dec; 129(24): 5767-78. doi: 10.1242/dev.00172.

Hai B, Yang Z, Millar SE, Choi YS, Taketo MM, Nagy A, Liu F. Wnt/β-catenin signaling regulates postnatal development and regeneration of the salivary gland. Stem cells and development. 2010 Nov 1;19(11):1793-801. doi: 10.1089/scd.2009.0499

Matsumoto S, Kurimoto T, Taketo MM, Fujii S, Kikuchi A. The WNT/MYB pathway suppresses KIT expression to control the timing of salivary proacinar differentiation and duct formation. Development. 2016 Jul; 143(13): 2311-24. doi: 10.1242/dev.134486.

Hu L, Du C, Yang Z, Yang Y, Zhu Z, Shan Z et al. Transient activation of hedgehog signaling inhibits cellular senescence and inflammation in radiated swine salivary glands through preserving resident macrophages. International Journal of Molecular Sciences. 2021 Dec; 22(24): 13493. doi: 10.3390/ijms222413493.

Wells KL, Mou C, Headon DJ, Tucker AS. Recombinant EDA or Sonic Hedgehog rescue the branching defect in Ectodysplasin A pathway mutant salivary glands in vitro. Developmental Dynamics. 2010 Oct; 239(10): 2674-84. doi: 10.1002/dvdy.22406

Zhao Q, Zhang L, Hai B, Wang J, Baetge CL, Deveau MA et al. Transient activation of the Hedgehog-Gli pathway rescues radiotherapy-induced dry mouth via recovering salivary gland resident macrophages. Cancer Research. 2020 Dec; 80(24): 5531-42. doi: 10.1158/0008-5472.CAN-20-0503.

Hai B, Qin L, Yang Z, Zhao Q, Shangguan L, Ti X et al. Transient activation of hedgehog pathway rescued irradiation-induced hyposalivation by preserving salivary stem/progenitor cells and parasympathetic innervation. Clinical Cancer Research. 2014 Jan; 20(1): 140-50. doi: 10.1158/1078-0432.CCR-13-1434.

Melnick M, Phair RD, Lapidot SA, Jaskoll T. Salivary gland branching morphogenesis: a quantitative systems analysis of the Eda/Edar/NFκB paradigm. BioMed Central Developmental Biology. 2009 Dec; 9: 1-22. doi: 10.1186/1471-213X-9-32.

Dang H, Lin AL, Zhang B, Zhang HM, Katz MS, Yeh CK. Role for Notch signaling in salivary acinar cell growth and differentiation. Developmental dynamics: an official publication of the American Association of Anatomists. 2009 Mar; 238(3): 724-31. doi: 10.1002/dvdy.21875.

Imatani A and Callahan R. Identification of a novel NOTCH-4/INT-3 RNA species encoding an activated gene product in certain human tumor cell lines. Oncogene. 2000 Jan; 19(2): 223-31. doi: 10.1038/sj.onc.1203295.

Mikkola ML. Molecular aspects of hypohidrotic ectodermal dysplasia. American Journal of Medical Genetics Part A. 2009 Sep; 149(9): 2031-6. doi: 10.1002/ajmg.a.32855.

Schenck K, Schreurs O, Hayashi K, Helgeland K. The role of nerve growth factor (NGF) and its precursor forms in oral wound healing. International Journal of Molecular Sciences. 2017 Feb; 18(2): 386. doi: 10.3390/ijms18020386.

Wang X, Li Z, Shao Q, Zhang C, Wang J, Han Z et al. The intact parasympathetic nerve promotes submandibular gland regeneration through ductal cell proliferation. Cell Proliferation. 2021 Jul; 54(7): e13078. doi: 10.1111/cpr.13078.

Næsse EP, Schreurs O, Messelt E, Hayashi K, Schenck K. Distribution of nerve growth factor, pro‐nerve growth factor, and their receptors in human salivary glands. European Journal of Oral Sciences. 2013 Feb; 121(1): 13-20. doi: 10.1111/eos.12008.

Peng X, Varendi K, Maimets M, Andressoo JO, Coppes RP. Role of glial-cell-derived neurotrophic factor in salivary gland stem cell response to irradiation. Radiotherapy and Oncology. 2017 Sep; 124(3): 448-54. doi: 10.1016/j.radonc.2017.07.008.

Kadoya YU and Yamashina SH. Distribution of alpha 6 integrin subunit in developing mouse submandibular gland. Journal of Histochemistry & Cytochemistry. 1993 Nov; 41(11): 1707-14. doi: 10.1177/41.11.8409377.

Menko AS, Kreidberg JA, Ryan TT, Van Bockstaele E, Kukuruzinska MA. Loss of α3β1 integrin function results in an altered differentiation program in the mouse submandibular gland. Developmental dynamics: an official publication of the American Association of Anatomists. 2001 Apr; 220(4): 337-49. doi: 10.1002/dvdy.1114.

Lourenço SV and Kapas S. Integrin expression in developing human salivary glands. Histochemistry and Cell Biology. 2005 Nov; 124: 391-9. doi: 10.1007/s00418-005-0784-3.

Pummila M, Fliniaux I, Jaatinen R, James MJ, Laurikkala J, Schneider P et al. Ectodysplasin has a dual role in ectodermal organogenesis: inhibition of Bmp activity and induction of Shh expression. 2007 Jan; 134(1): 117-25. doi: 10.1242/dev.02708.

Häärä O, Fujimori S, Schmidt-Ullrich R, Hartmann C, Thesleff I, Mikkola ML. Ectodysplasin and Wnt pathways are required for salivary gland branching morphogenesis. Development. 2011 Jul; 138(13): 2681-91. doi: 10.1242/dev.057711.

Wells KL, Mou C, Headon DJ, Tucker AS. Recombinant EDA or Sonic Hedgehog rescue the branching defect in Ectodysplasin A pathway mutant salivary glands in vitro. Developmental Dynamics. 2010 Oct; 239(10): 2674-84. doi: 10.1002/dvdy.22406.

Chen Z, Chen X, Zhu B, Yu H, Bao X, Hou Y et al. TGF-β1 Triggers Salivary Hypofunction via Attenuating Protein Secretion and AQP5 Expression in Human Submandibular Gland Cells. Journal of Proteome Research. 2023 Aug; 22(9): 2803-13. doi: 10.1021/acs.jproteome.3c00052.

Porcheri C and Mitsiadis TA. Physiology, pathology and regeneration of salivary glands. Cells. 2019 Aug; 8(9): 976. doi: 10.3390/cells8090976.

Emmerson E, Knox SM. Salivary gland stem cells: a review of development, regeneration and cancer. genesis. 2018; 56(5): e23211. doi: 10.1002/dvg.23211.

Holmberg KV and Hoffman MP. Anatomy, biogenesis and regeneration of salivary glands. Saliva: secretion and functions. 2014 May; 24: 1-3. doi: 10.1159/000358776.

Pedersen AM, Sørensen CE, Proctor GB, Carpenter GH, Ekström J. Salivary secretion in health and disease. Journal of Oral Rehabilitation. 2018 Sep; 45(9): 730-46. doi: 10.1111/joor.12664.

Gervais EM, Sequeira SJ, Wang W, Abraham S, Kim JH, Leonard D et al. Par-1b is required for morphogenesis and differentiation of myoepithelial cells during salivary gland development. Organogenesis. 2016 Oct; 12(4): 194-216. doi: 10.1080/15476278.2016.1252887.

Wu D, Chapela PJ, Barrows CM, Harrington DA, Carson DD, Witt RL et al. MUC1 and polarity markers INADL and SCRIB identify salivary ductal cells. Journal of Dental Research. 2022 Jul; 101(8): 983-91. doi: 10.1177/00220345221076122.

Brazen B and Dyer J. Histology, salivary glands. 2019.

Proctor GB and Carpenter GH. Salivary secretion: mechanism and neural regulation. Saliva: Secretion and functions. 2014; 24: 14-29. doi: 10.1159/000358781.

Khalafalla MG, Woods LT, Jasmer KJ, Forti KM, Camden JM, Jensen JL et al. P2 receptors as therapeutic targets in the salivary gland: from physiology to dysfunction. Frontiers in Pharmacology. 2020 Mar; 11: 222. doi: 10.3389/fphar.2020.00222.

Rugel-Stahl A, Elliott ME, Ovitt CE. Ascl3 marks adult progenitor cells of the mouse salivary gland. Stem Cell Research. 2012 May; 8(3): 379-87. doi: 10.1016/j.scr.2012.01.002.

Brosky ME. The role of saliva in oral health: strategies for prevention and management of xerostomia. The Journal of Supportive Oncology. 2007 May; 5(5): 215-25.

Smith CH, Boland B, Daureeawoo Y, Donaldson E, Small K, Tuomainen J. Effect of aging on stimulated salivary flow in adults. Journal of the American Geriatrics Society. 2013 May; 61(5): 805-8. doi: 10.1111/jgs.12219.

Tanaka J and Mishima K. Application of regenerative medicine to salivary gland hypofunction. Japanese Dental Science Review. 2021 Nov; 57: 54-9. doi: 10.1016/j.jdsr.2021.03.002.

Nelson J, Manzella K, Baker O. Current cell models for bioengineering a salivary gland: a mini‐review of emerging technologies. Oral Diseases. 2013 Apr; 19(3): 236-44. doi: 10.1111/j.1601-0825.2012.01958.x.

Jaskoll T, Leo T, Witcher D, Ormestad M, Astorga J, Bringas Jr P et al. Sonic hedgehog signaling plays an essential role during embryonic salivary gland epithelial branching morphogenesis. Developmental dynamics: an official publication of the American Association of Anatomists. 2004 Apr; 229(4): 722-32. doi: 10.1002/dvdy.10472.

Bolk K, Mueller K, Phalke N, Walvekar RR. Management of Benign salivary gland conditions. Surgical Clinics. 2022 Apr; 102(2): 209-31. doi: 10.1016/j.suc.2022.01.001.

Tzioufas AG and Voulgarelis M. Update on Sjögren's syndrome autoimmune epithelitis: from classification to increased neoplasias. Best Practice & Research Clinical Rheumatology. 2007 Dec; 21(6): 989-1010. doi: 10.1016/j.berh.2007.09.001.

Pynnonen MA, Gillespie MB, Roman B, Rosenfeld RM, Tunkel DE, Bontempo L et al. Clinical practice guideline: evaluation of the neck mass in adults. Otolaryngology-Head and Neck Surgery. 2017 Sep; 157(2): 30. doi: 10.1177/0194599817722550.

Luitje ME, Israel AK, Cummings MA, Giampoli EJ, Allen PD, Newlands SD et al. Long-term maintenance of acinar cells in human submandibular glands after radiation therapy. International Journal of Radiation Oncology* Biology* Physics. 2021 Mar; 109(4): 1028-39. doi: 10.1016/j.ijrobp.2020.10.037.

Baum BJ, Alevizos I, Chiorini JA, Cotrim AP, Zheng C. Advances in salivary gland gene therapy-oral and systemic implications. Expert Opinion on Biological Therapy. 2015 Oct; 15(10): 1443-54. doi: 10.1517/14712598.2015.1064894.

Donnelly H, Salmeron-Sanchez M, Dalby MJ. Designing stem cell niches for differentiation and self-renewal. Journal of the Royal Society Interface. 2018 Aug; 15(145): 20180388. doi: 10.1098/rsif.2018.0388.

Mousaei Ghasroldasht M, Seok J, Park HS, Liakath Ali FB, Al-Hendy A. Stem cell therapy: from idea to clinical practice. International Journal of Molecular Sciences. 2022 Mar; 23(5): 2850. doi: 10.3390/ijms23052850.

Emmerson E, May AJ, Berthoin L, Cruz‐Pacheco N, Nathan S, Mattingly AJ et al. Salivary glands regenerate after radiation injury through SOX2‐mediated secretory cell replacement. European Molecular Biology Organization Molecular Medicine. 2018 Mar; 10(3): e8051. doi: 10.15252/emmm.201708051.

Feng J, van der Zwaag M, Stokman MA, van Os R, Coppes RP. Isolation and characterization of human salivary gland cells for stem cell transplantation to reduce radiation-induced hyposalivation. Radiotherapy and Oncology. 2009 Sep; 92(3): 466-71. doi: 10.1016/j.radonc.2009.06.023.

Ninche N, Kwak M, Ghazizadeh S. Diverse epithelial cell populations contribute to the regeneration of secretory units in injured salivary glands. Development. 2020 Oct; 147(19): dev192807. doi: 10.1101/2020.06.29.177733.

Laine M, Virtanen I, Salo T, Konttinen YT. Segment‐specific but pathologic laminin isoform profiles in human labial salivary glands of patients with Sjögren's syndrome. Arthritis & Rheumatism. 2004 Dec; 50 (12): 3968-73. doi: 10.1002/art.20730.

Porola P, Laine M, Virtanen I, Pöllänen R, Przybyla BD, Konttinen YT. Androgens and integrins in salivary glands in Sjögren's syndrome. The Journal of Rheumatology. 2010 Jun; 37(6): 1181-7. doi: 10.3899/jrheum.091354.

Bullard T, Koek L, Roztocil E, Kingsley PD, Mirels L, Ovitt CE. Ascl3 expression marks a progenitor population of both acinar and ductal cells in mouse salivary glands. Developmental Biology. 2008 Aug; 320 (1): 72-8. doi: 10.1016/j.ydbio.2008.04.018.

May AJ, Cruz-Pacheco N, Emmerson E, Gaylord EA, Seidel K, Nathan S et al. Diverse progenitor cells preserve salivary gland ductal architecture after radiation-induced damage. Development. 2018 Nov; 145 (21): dev166363. doi: 10.1242/dev.166363.

Matheu A, Collado M, Wise C, Manterola L, Cekaite L, Tye AJ et al. Oncogenicity of the developmental transcription factor Sox9. Cancer Research. 2012 Mar; 72(5): 1301-15. doi: 10.1158/0008-5472.CAN-11-3660.

Ivanov SV, Panaccione A, Nonaka D, Prasad ML, Boyd KL, Brown B et al. Diagnostic SOX10 gene signatures in salivary adenoid cystic and breast basal-like carcinomas. British Journal of Cancer. 2013 Jul; 109(2): 444-51. doi: 10.1038/bjc.2013.326.

Redman RS. On approaches to the functional restoration of salivary glands damaged by radiation therapy for head and neck cancer, with a review of related aspects of salivary gland morphology and development. Biotechnic & Histochemistry. 2008 Jan; 83(3-4): 103-30. doi: 10.1080/10520290802374683.

Häärä O, Fujimori S, Schmidt-Ullrich R, Hartmann C, Thesleff I, Mikkola ML. Ectodysplasin and Wnt pathways are required for salivary gland branching morphogenesis. Development. 2011 Jul; 138(13): 2681-91. doi: 10.1242/dev.057711.

Wells KL, Mou C, Headon DJ, Tucker AS. Recombinant EDA or Sonic Hedgehog rescue the branching defect in Ectodysplasin A pathway mutant salivary glands in vitro. Developmental Dynamics. 2010 Oct; 239(10): 2674-84. doi: 10.1002/dvdy.22406.

Borkosky SS, Nagatsuka H, Orita Y, Tsujigiwa H, Yoshinobu J, Gunduz M et al. Sequential expressions of Notch1, Jagged2 and Math1 in molar tooth germ of mouse. Biocell. 2008 Dec; 32(3): 251-7. doi: 10.32604/biocell.2008.32.251.

Mitsiadis TA, Graf D, Luder H, Gridley T, Bluteau G. BMPs and FGFs target Notch signalling via jagged 2 to regulate tooth morphogenesis and cytodifferentiation. Development. 2010 Sep; 137(18): 3025-35. doi: 10.1242/dev.049528.

Qu J, Song M, Xie J, Huang XY, Hu XM, Gan RH et al. Notch2 signaling contributes to cell growth, invasion, and migration in salivary adenoid cystic carcinoma. Molecular and Cellular Biochemistry. 2016 Jan; 411: 135-41. doi: 10.1007/s11010-015-2575-z.

Błochowiak K. Co-Existence of Dry Mouth, Xerostomia, and Focal Lymphocytic Sialadenitis in Patients with Sjögren's Syndrome. Applied Sciences. 2024 Jun; 14(13): 5451. doi: 10.3390/app14135451.

Chibly AM, Aure MH, Patel VN, Hoffman MP. Salivary gland function, development, and regeneration. Physiological reviews. 2022 Jul; 102(3): 1495-552. doi: 10.1152/physrev.00015.2021.

Hajiabbas M, D'Agostino C, Simińska-Stanny J, Tran SD, Shavandi A, Delporte C. Bioengineering in salivary gland regeneration. Journal of Biomedical Science. 2022 Jun; 29(1): 35. doi: 10.1186/s12929-022-00819-w.

Aframian DJ amd Palmon A. Current status of the development of an artificial salivary gland. Tissue Engineering Part B: Reviews. 2008 Jun; 14(2): 187-98. doi: 10.1089/ten.teb.2008.0044.

Sui Y, Zhang S, Li Y, Zhang X, Hu W, Feng Y et al. Generation of functional salivary gland tissue from human submandibular gland stem/progenitor cells. Stem Cell Research & Therapy. 2020 Dec; 11: 1-3. doi: 10.1186/s13287-020-01628-4.

Wang T, Huang Q, Rao Z, Liu F, Su X, Zhai X et al. Injectable decellularized extracellular matrix hydrogel promotes salivary gland regeneration via endogenous stem cell recruitment and suppression of fibrogenesis. Acta Biomaterialia. 2023 Oct; 169: 256-72. doi: 10.1016/j.actbio.2023.08.003.

Downloads

Published

2024-12-31
CITATION
DOI: 10.54393/pjhs.v5i12.1755
Published: 2024-12-31

How to Cite

Ahmed, Z.-U.-D., Rao, M., Jawad, F., Khan, S. U., Rehman, T., & Rahim, M. (2024). Cellular and Molecular Mechanisms of Salivary Gland Development and Regeneration: Implications for Tissue Engineering and Regenerative Medicine: Salivary Gland Development and Regeneration. Pakistan Journal of Health Sciences, 5(12). https://doi.org/10.54393/pjhs.v5i12.1755

Issue

Section

Systematic Review

Plaudit