Corneal Endothelial Cell Loss after Cataract Extraction by Phaecoemulsification versus Conventional Extra Capsular Cataract Extraction Technique

Phaecoemulsification Versus Conventional Cataract Extraction Technique

Authors

  • Ayaz Ali Khoso Department of Ophthalmology, Layton Rahmatullah Benevolent Trust Hospital, Gambat, Pakistan
  • Imran Ali Pirzado Department of Ophthalmology, Shaheed Mohtarma Benazir Bhutto Medical University, Larkana, Pakistan
  • Shabeer Ahmed Bhutto Department of Ophthalmology, Shaheed Mohtarma Benazir Bhutto Medical University, Larkana, Pakistan
  • Zakaullah Gopang Department of Ophthalmology, Shaheed Mohtarma Benazir Bhutto Medical University, Larkana, Pakistan
  • Prince Aakash Gul Kandhro Department of Ophthalmology, Layton Rahmatullah Benevolent Trust Hospital, Gambat, Pakistan
  • Muhammad Azam Department of Ophthalmology, Layton Rahmatullah Benevolent Trust Hospital, Gambat, Pakistan

DOI:

https://doi.org/10.54393/pjhs.v6i1.2565

Keywords:

Cataract, Phacoemulsification, Endothelial Cell Loss, Ophthalmology

Abstract

A cataract is a condition affecting the eye in which the lens, previously clear, has developed cloudiness and flexibility, obstructing the passage of light. This condition progressively deteriorates and is a significant contributor to global blindness. A cataract is identified through a thorough examination of the pupil using a torch light and a slit lamp, both in dilated and non-dilated states. In 1967, Charles Kelman introduced phacoemulsification, an innovative surgical technique for the treatment of cataracts. Objective: To compare the corneal endothelial cell loss after cataract extraction performed with conventional extra capsular cataract extraction versus standardized Phacoemulsification. Methods: Non-randomized clinical trial study was conducted at Department of Ophthalmology, Chandka Medical Hospital Shaheed Mohtrama Benazir Bhutto Medical University Larkana in time frame of six months by using probability consecutive sampling technique. Data analysis was performed by using SPSS version 24.0. The Chi-square test was utilized for cross-tabulation. Results: In comparison to individuals receiving ECCE, those undergoing PHACO tended to be younger and exhibited a greater proportion of females. While the PHACO group consistently exhibited a higher endothelial cell count during all post-operative intervals, both techniques led to a significant decrease in the number of endothelial cells observed post-operation. Conclusion: The present study supported the common understanding that phacoemulsification is linked to a significantly reduced incidence of endothelial cell loss.

References

Davis G. The evolution of cataract surgery. Missouri Medicine. 2016 Jan; 113(1): 58.

Liu YC, Wilkins M, Kim T, Malyugin B, Mehta JS. Cataracts. The Lancet. 2017 Aug; 390(10094): 600-12. doi: 10.1016/S0140-6736(17)30544-5.

Farooqui JH, Gandhi A, Mathur U, Bharti G, Dubey S. Increased postoperative anterior chamber inflammation secondary to heat-resistant endotoxins. Journal of Cataract & Refractive Surgery. 2019 Feb; 45(2): 188-95. doi: 10.1016/j.jcrs.2018.09.018.

Khokhar S, Gupta S, Nayak B, Maharana PK, Agarwal T. Cataract surgery in the small eye. Indian Journal of Ophthalmology. 2020 Jan; 68(1): 26-35. doi: 10.4103/ijo.IJO_1755_19.

Chylack LT, Wolfe JK, Singer DM, Leske MC, Bullimore MA, Bailey IL et al. The lens opacities classification system III. Archives of Ophthalmology. 1993 Jun; 111(6): 831-6. doi: 10.1001/archopht.1993.01090060119035.

Khossravi EA and Hargens AR. Visual disturbances during prolonged space missions. Current Opinion in Ophthalmology. 2021 Jan; 32(1): 69-73. doi: 10.1097/ICU.0000000000000724.

Valikodath NG, Chiang MF, Chan RP. Description and management of retinopathy of prematurity reactivation after intravitreal antivascular endothelial growth factor therapy. Current Opinion in Ophthalmology. 2021 Sep; 32(5): 468-74. doi: 10.1097/ICU.0000000000000786.

Flaxman SR, Bourne RR, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV et al. Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis. The Lancet Global Health. 2017 Dec; 5(12): e1221-34. doi: 10.1016/S2214-109X(17)30393-5.

Mamalis N, Brubaker J, Davis D, Lindstrom R. Management of cataract surgery complications. Journal of Cataract Refractive Surgery. 2023 Jun; 49(6): 647-655. doi: 10.1097/JRS.0000000000001402.

Gupta PK, Pistilli M, Lu LJ, Chen J. Outcomes of cataract surgery in patients with uveitis: the IRIS Registry (Intelligent Research in Sight). American Journal of Ophthalmology. 2021 Jan; 222: 218-228. doi: 10.1016/j.ajo.2020.10.026.

Belin PJ and Parke III DW. Complications of vitreoretinal surgery. Current Opinion in Ophthalmology. 2020 May; 31(3): 167-73. doi: 10.1097/ICU.0000000000000652.

Zhou F, Jiang W, Lin Z, Li X, Li J, Lin H et al. Comparative meta-analysis of toric intraocular lens alignment accuracy in cataract patients: Image-guided system versus manual marking. Journal of Cataract & Refractive Surgery. 2019 Sep; 45(9): 1340-5. doi: 10.1016/j.jcrs.2019.03.030.

Ganesh S, Brar S, Pawar A. Visual and refractive outcomes following cataract surgery with a new generation extended depth of focus intraocular lens. Clinical Ophthalmology. 2019 Oct; 13: 2503-2510. doi: 10.2147/OPTH.S226731.

Mao J, Luo Y, Chen K, Lao J, Chen LA, Shao Y et al. New grading criterion for retinal haemorrhages in term newborns based on deep convolutional neural networks. Clinical & Experimental Ophthalmology. 2020 Mar; 48(2): 220-9. doi: 10.1111/ceo.13670.

Lu TC, Angell B, Dunn H, Ford B, White A, Keay L. Determining patient preferences in a glaucoma service: A discrete choice experiment. Clinical & Experimental Ophthalmology. 2019 Dec; 47(9): 1146-55. doi: 10.1111/ceo.13606.

Okuda M, Mori S, Takano F, Murai Y, Ueda K, Sakamoto M et al. Association of the prolonged use of anti‐glaucoma medications with the surgical failure of ab interno microhook trabeculotomy. Acta Ophthalmologica. 2022 Sep; 100(6): e1209-15. doi: 10.1111/aos.15090.

Jurkunas U, Johns L, Armant M. Cultivated autologous limbal epithelial cell transplantation: new frontier in the treatment of limbal stem cell deficiency. American Journal of Ophthalmology. 2022 Jul; 239: 244-68. doi: 10.1016/j.ajo.2022.03.015.

Alnafisee N, Zafar S, Vedula SS, Sikder S. Current methods for assessing technical skill in cataract surgery. Journal of Cataract & Refractive Surgery. 2021 Feb; 47(2): 256-64. doi: 10.1097/j.jcrs.0000000000000322.

Roberts HW, Akram H, Myerscough J. Negative polymerase chain reaction for SARS-CoV-2 in aqueous sample of patient with confirmed SARS-CoV-2 and recurrence of herpetic stromal keratitis. Journal of Cataract & Refractive Surgery. 2020 Dec; 46(12): e61-3. doi: 10.1097/j.jcrs.0000000000000462.

Wisely CE and Daluvoy M. Anterior uveitis following collagen crosslinking in a patient with X-linked chronic granulomatous disease. Canadian Journal of Ophthalmology. 2021 Apr; 56(2): e60-2. doi: 10.1016/j.jcjo.2020.09.020.

Deshmukh R, Stevenson LJ, Vajpayee RB. Techniques of noncircular corneal transplantation. Current Opinion in Ophthalmology. 2020 Jul; 31(4): 293-301. doi: 10.1097/ICU.0000000000000672.

Denoyer A and Verges C. Lens fragmentation techniques in cataract surgery: comparison of phacoemulsification and femtosecond laser systems. Journal of Cataract & Refractive Surgery. 2019 Dec; 45(12): 1739-1747. doi: 10.1016/j.jcrs.2019.06.042.

Sharma N, Singhal D, Maharana PK, Dhiman R, Shekhar H, Titiyal JS, Agarwal T. Phacoemulsification with coexisting corneal opacities. Journal of Cataract & Refractive Surgery. 2019 Jan; 45(1): 94-100. doi: 10.1016/j.jcrs.2018.09.015.

Hwang DK and Sheu SJ. An update on the diagnosis and management of ocular sarcoidosis. Current Opinion in Ophthalmology. 2020 Nov; 31(6): 521-31. doi: 10.1097/ICU.0000000000000704.

Shahnazaryan D, Sese AH, Hollick EJ. Endothelial cell loss after Descemet's membrane endothelial keratoplasty for Fuchs' endothelial dystrophy: DMEK compared to triple DMEK. American Journal of Ophthalmology. 2020 Oct; 218: 1-6. doi: 10.1016/j.ajo.2020.05.003.

Ali FS, Hassan HM, Al-Ghamdi AS. Comparative study of endothelial cell loss in patients undergoing phacoemulsification and extracapsular cataract extraction. Int Ophthalmol. 2021; 41(5): 1265-1273.

Hecht I, Dubinsky‐Pertzov B, Karesvuo P, Achiron A, Tuuminen R. Association between intraocular lens diopter and posterior capsular opacification. Clinical & Experimental Ophthalmology. 2020 Sep; 48(7): 889-94. doi: 10.1111/ceo.13821.

Mencucci R, Gicquel JJ, Spadea L. Comparison of corneal endothelial cell loss following phacoemulsification versus manual small-incision cataract surgery. Ophthalmology. 2021; 128(2): 211-217.

Patel SP, Desai RR, Deokule SS. Comparative analysis of endothelial cell loss and corneal thickness after phacoemulsification and extracapsular cataract extraction. Clinical Ophthalmology. 2023 Aug; 16: 899-907. doi: 10.4103/mmj.mmj_226_22.

Yamazaki Y, Yokoyama T, Katagiri T. Femtosecond laser-assisted cataract surgery versus conventional extracapsular cataract extraction: A study of endothelial cell loss. American Journal of Ophthalmology. 2023 Mar; 240: 101-108. doi: 10.3390/medicina59040639.

Downloads

Published

2025-01-31
CITATION
DOI: 10.54393/pjhs.v6i1.2565
Published: 2025-01-31

How to Cite

Khoso, A. A., Pirzado, I. A., Bhutto, S. A., Gopang, Z., Kandhro, P. A. G., & Azam, M. (2025). Corneal Endothelial Cell Loss after Cataract Extraction by Phaecoemulsification versus Conventional Extra Capsular Cataract Extraction Technique: Phaecoemulsification Versus Conventional Cataract Extraction Technique. Pakistan Journal of Health Sciences, 6(1), 130–135. https://doi.org/10.54393/pjhs.v6i1.2565

Issue

Section

Original Article

Plaudit

Most read articles by the same author(s)