SARS-CoV-2 and Angiotensin-Converting Enzyme-2 Receptor Interaction Blocker– an In-Silico Approach

In-Silico Analysis of SARS-CoV-2 and ACE-2 Receptor Interaction Blockers

Authors

  • Zoha Khan School of Biochemistry and Biotechnology (SBB), University of Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
  • Muhammad Suleman School of Biological Sciences (SBS), University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
  • Hamna Tariq Department of Molecular Biology, University of Okara, Renala Khurd, Pakistan
  • Mehvish Mumtaz Department of Molecular Biology, University of Okara, Renala Khurd, Pakistan
  • Hafiz Muhammad Husnain Azam National Institute for Biotechnology and Genetic Engineering, NIBGE, Faisalabad, Pakistan
  • Nazim Hussain Centre for Applied Molecular Biology (CAMB), University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
  • Hadia Sarfraz Department of Molecular Biology, University of Okara, Renala Khurd, Pakistan
  • Zulqarnain Baqar Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
  • Haris Munir Department of Molecular Biology, University of Okara, Renala Khurd, Pakistan
  • Moeen Zulfiqar Department of Molecular Biology, University of Okara, Renala Khurd, Pakistan

DOI:

https://doi.org/10.54393/pjhs.v5i03.1340

Keywords:

Severe Acute Respiratory Syndrome, Furin and Transmembrane Serine Protease 2, Angiotensin-Converting Enzyme, Protease Inhibitor, Spike Protein

Abstract

The global COVID-19 pandemic, instigated by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has led to substantial morbidity and mortality on a worldwide scale. While COVID-19 vaccines offer hope, the emergence of mutated viral strains necessitates the development of FDA-approved drugs to address future outbreaks. Objective: To examine prospective antiviral medications through an analysis of the interaction between the spike protein of SARS-CoV-2 and Angiotensin-converting enzyme-2 (ACE-2) receptors, which play a pivotal role in facilitating viral entry into host cells. Methods: Molecular docking was employed to assess the binding affinities of various protease inhibitors with ACE-2 receptors. Natural proteases, including Furin and Transmembrane serine protease 2 (TMPRSS2), cleave viral spike proteins into S1 and S2 subunits, facilitating fusion with ACE-2 receptors. We assessed the binding energies of Indinavir, Nafamostat, Fosamprenavir, Lopinavir, and Boceprevir to inhibit this interaction with a sense of optimism for their potential therapeutic applications. Results: Our findings suggest potential treatments for COVID-19, with Indinavir, Nafamostat, Fosamprenavir, Lopinavir, and Boceprevir displaying promising binding energies of -9.6 kcal/mol, -8.4 kcal/mol, -7.7 kcal/mol, and -7.5 kcal/mol, respectively. Conclusions: While promising, further clinical trials are important to potentially evaluate the efficacy and safety of these proposed drugs in combating COVID-19 and its variants.

References

Alizadehsani R, Alizadeh Sani Z, Behjati M, Roshanzamir Z, Hussain S, Abedini N, Hasanzadeh F, Khosravi A, Shoeibi A, Roshanzamir M, Moradnejad P et al. Risk factors prediction, clinical outcomes, and mortality in COVID‐19 patients. Journal of Medical Virology. 2021 Apr; 93(4): 2307-20. doi: 10.1002/jmv.26699. DOI: https://doi.org/10.1002/jmv.26699

Baig MS, Alagumuthu M, Rajpoot S, Saqib U. Identification of a potential peptide inhibitor of SARS-CoV-2 targeting its entry into the host cells. Drugs in R&D. 2020 Sep; 20: 161-9. doi: 10.1007/s40268-020-00312-5. DOI: https://doi.org/10.1007/s40268-020-00312-5

Bayati A, Kumar R, Francis V, McPherson PS. SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis. Journal of Biological Chemistry. 2021 Jan; 296. doi: 10.1016/j.jbc.2021.100306. DOI: https://doi.org/10.1016/j.jbc.2021.100306

Bourgonje AR, Abdulle AE, Timens W, Hillebrands JL, Navis GJ, Gordijn SJ, Bolling MC, Dijkstra G, Voors AA, Osterhaus AD, van Der Voort PH et al. Angiotensin‐converting enzyme 2 (ACE2), SARS‐CoV‐2 and the pathophysiology of coronavirus disease 2019 (COVID‐19). The Journal of Pathology. 2020 Jul; 251(3): 228-48. doi: 10.1002/path.5471. DOI: https://doi.org/10.1002/path.5471

Carlesso A, Chintha C, Gorman AM, Samali A, Eriksson LA. Merits and pitfalls of conventional and covalent docking in identifying new hydroxyl aryl aldehyde like compounds as human IRE1 inhibitors. Scientific reports. 2019 Mar; 9(1): 3407. doi: 10.1038/s41598-019-39939-z. DOI: https://doi.org/10.1038/s41598-019-39939-z

Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV. Biochemical and Biophysical Research Communications. 2020 Apr; 525(1): 135-40. doi: 10.1016/j.bbrc.2020.02.071. DOI: https://doi.org/10.1016/j.bbrc.2020.02.071

Dhama K, Sharun K, Tiwari R, Dadar M, Malik YS, Singh KP, Chaicumpa W et al. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Human Vaccines & Immunotherapeutics. 2020 Jun; 16(6): 1232-8. doi: 10.1080/21645515.2020.1735227. DOI: https://doi.org/10.1080/21645515.2020.1735227

Gallo O, Locatello LG, Mazzoni A, Novelli L, Annunziato F. The central role of the nasal microenvironment in the transmission, modulation, and clinical progression of SARS-CoV-2 infection. Mucosal Immunology. 2021 Mar; 14(2): 305-16. doi: 10.1038/s41385-020-00359-2. DOI: https://doi.org/10.1038/s41385-020-00359-2

Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, Tan KS, Wang DY, Yan Y et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak-an update on the status. Military Medical Research. 2020 Dec; 7: 1-0. doi: 10.1186/s40779-020-00240-0. DOI: https://doi.org/10.1186/s40779-020-00240-0

Hasan A, Paray BA, Hussain A, Qadir FA, Attar F, Aziz FM, Sharifi M, Derakhshankhah H, Rasti B, Mehrabi M, Shahpasand K et al. A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin. Journal of Biomolecular Structure and Dynamics. 2021 May; 39(8): 3025-33. doi: 10.1080/07391102.2020.1754293. DOI: https://doi.org/10.1080/07391102.2020.1754293

Hendaus MA. Remdesivir in the treatment of coronavirus disease 2019 (COVID-19): a simplified summary. Journal of Biomolecular Structure and Dynamics. 2021 Jul; 39(10): 3787-92. doi: 10.1080/07391102.2020.1767691. DOI: https://doi.org/10.1080/07391102.2020.1767691

Hoffmann M, Kleine-Weber H, Krüger N, Müller M, Drosten C, Pöhlmann S. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. BioRxiv. 2020 Jan: 2020-01. doi: 10.1101/2020.01.31.929042. DOI: https://doi.org/10.1101/2020.01.31.929042

Jin Y, Yang H, Ji W, Wu W, Chen S, Zhang W, Duan G et al. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses. 2020 Mar; 12(4): 372. doi: 10.3390/v12040372. DOI: https://doi.org/10.3390/v12040372

Li Y, Zhao R, Zheng S, Chen XU, Wang J, Sheng X, Zhou J, Cai H, Fang Q, Yu F, Fan J et al. Lack of vertical transmission of severe acute respiratory syndrome coronavirus 2, China. Emerging infectious diseases. 2020 Jun; 26(6): 1335. doi: 10.3201/eid2606.200287. DOI: https://doi.org/10.3201/eid2606.200287

Lukassen S, Chua RL, Trefzer T, Kahn NC, Schneider MA, Muley T, Winter H, Meister M, Veith C, Boots AW, Hennig BP et al. SARS‐CoV‐2 receptor ACE 2 and TMPRSS 2 are primarily expressed in bronchial transient secretory cells. The EMBO journal. 2020 May; 39(10): e105114. doi: 10.15252/embj.20105114. DOI: https://doi.org/10.15252/embj.20105114

Oluwagbemi OO, Oladipo EK, Kolawole OM, Oloke JK, Adelusi TI, Irewolede BA, Dairo EO, Ayeni AE, Kolapo KT, Akindiya OE, Oluwasegun JA et al. Bioinformatics, computational informatics, and modeling approaches to the design of mRNA COVID-19 vaccine candidates. Computation. 2022 Jul; 10(7): 117. doi: 10.3390/computation10070117. DOI: https://doi.org/10.3390/computation10070117

Santos RA, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, Campagnole-Santos MJ et al. The ACE2/angiotensin-(1-7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1-7). Physiological reviews. 2017 Dec. doi: 10.1152/physrev.00023.2016. DOI: https://doi.org/10.1152/physrev.00023.2016

Tai W, He L, Zhang X, Pu J, Voronin D, Jiang S, Zhou Y, Du L et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cellular & Molecular Immunology. 2020 Jun; 17(6): 613-20. doi: 10.1038/s41423-020-0400-4. DOI: https://doi.org/10.1038/s41423-020-0400-4

Wang X, Xu W, Hu G, Xia S, Sun Z, Liu Z, Xie Y, Zhang R, Jiang S, Lu L et al. Retraction Note to: SARS-CoV-2 infects T lymphocytes through its spike protein-mediated membrane fusion. Cellular and Molecular Immunology. 2020 Aug; 17(8): 894. doi: 10.1038/s41423-020-0498-4. DOI: https://doi.org/10.1038/s41423-020-0498-4

Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet. 2020 Mar; 395(10229): 1054-62. doi: 10.1016/S0140-6736(20)30566-3. DOI: https://doi.org/10.1016/S0140-6736(20)30566-3

Published

2024-03-31
CITATION
DOI: 10.54393/pjhs.v5i03.1340
Published: 2024-03-31

How to Cite

Khan, Z., Suleman, M., Tariq, H., Mumtaz, M., Azam, H. M. H. ., Hussain, N., Sarfraz, H., Baqar, Z., Munir, H., & Zulfiqar, M. (2024). SARS-CoV-2 and Angiotensin-Converting Enzyme-2 Receptor Interaction Blocker– an In-Silico Approach: In-Silico Analysis of SARS-CoV-2 and ACE-2 Receptor Interaction Blockers. Pakistan Journal of Health Sciences, 5(03), 100–106. https://doi.org/10.54393/pjhs.v5i03.1340

Issue

Section

Original Article

Plaudit

Most read articles by the same author(s)