Polycystic ovaries and non-alcoholic fatty liver disease are both associated with metabolic syndrome, which is characterized by central adiposity, hypertension, type II diabetes, and dyslipidemia. Insulin resistance appears to be the underlying pathophysiological mechanism for both diseases [1]. Because polycystic ovarian disease and non-alcoholic fatty liver disease co-exist, insulin resistance is a common characteristic of both conditions [2]. Brown et al. published the first study linking polycystic ovaries and nonalcoholic fatty liver disease in 2005. NASH was identified in a young female with polycystic ovaries who underwent a liver biopsy [3]. It is characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovary morphology and affects 8–18% of women throughout their reproductive years. Polycystic ovary syndrome is a prevalent, debilitating ailment among women of childbearing age [4-6]. Among the clinical manifestations of polycystic ovary syndrome are menstrual irregularities (oligomenorrhea or amenorrhea), hirsutism, chronic acne, androgen-dependent alopecia, abdominal obesity,
The initial diagnosis of polycystic ovarian syndrome was made in 1935 by two gynecologists, Drs. Stein and Leventhal. Compared to White people (20–25%) in the UK, South Asian women, particularly Pakistani women, have a substantially greater frequency of polycystic ovarian syndrome (52%) than do White people [8-10]. Polycystic ovarian syndrome and non-alcoholic fatty liver disease are also linked to metabolic syndrome, which includes symptoms such as central obesity, hypertension, type II diabetes, and dyslipidemia [11]. The normal pathophysiological system present in the two circumstances has all the earmarks of being basic insulin resistance [12]. Polycystic ovary disorder and non-alcoholic greasy liver illness coexist. The first relationship between non-alcoholic greasy liver illness and polycystic ovary condition was accounted for in 2005, by Brown et al [13]. They recorded NASH on liver biopsy in a youthful patient with polycystic ovary syndrome [14, 15]. Increased gamble of non-alcoholic greasy liver sickness in patients with polycystic ovary condition is because of their equivalent etiology [16]. It appears to be that these distinctions relate to hereditary, identity and uncommonly way of life, for example, food propensities and exercise [17-19]. This study's goal is to determine the association of NAFLD with PCOS patients compared to the general population and to alert scientists to the fact that it is becoming a sign of metabolic syndrome. The results of the study will aid in the accurate and prompt diagnosis and management of NAFLD and PCOS.

METHODS

In this cross-sectional study conducted at Chughtai Medical Center in Lahore, we enrolled a total of 272 female patients who were diagnosed with both polycystic ovaries and fatty liver disease. The sample size was calculated using means from relevant previous published studies. The data was collected using purposive sampling technique for the period of four months from December 2022 to March 2023. The study specifically focused and included individuals who had polycystic ovaries to check their association with fatty liver. To diagnose we utilized ultrasound equipment Toshiba Nemoo 17 equipped with a convex abdominal probe featuring a frequency range of 3-5 MHz. We diagnosed patients who had polycystic ovary syndrome and checked their liver echotexture. Patients with other pelvic pathologies were excluded from the study. Prior to any data collection, we ensured that informed consent was obtained from all study participants. After obtaining written permission, we utilized data collection sheets to gather relevant information. For data analysis, SPSS version 21.0 was employed. Descriptive statistics d to report the data, including the mean and standard deviation for quantitative variables such as age. Qualitative variables like echo texture of liver were checked by cross tabulation and applying chi-square test to check the presence of fatty liver in patients having PCOS. The echo texture was further checked by applying cross tabulation in three age groups to confirm Nonalcoholic fatty liver disease. Then cross tabulation was also applied to find the relationship to age with the presence of PCOS.

RESULTS

The mean of age of the female patients who had PCOS and diagnosed for fatty liver was 22.1507±3.88431.

Table 1: Descriptive Statistics of Age

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>272</td>
<td>17.00</td>
<td>30.00</td>
<td>22.150±3.884</td>
</tr>
</tbody>
</table>

The patients with PCOS were diagnosed on ultrasound and found that 74 people had fatty liver out of 272 which shows the association of fatty liver with PCOS. The Chi square tests show the p-value 0.025 which is significant.

Table 2: Echotexture of liver with PCOS Cross tabulation

<table>
<thead>
<tr>
<th>Echotexture * PCOS Cross tabulation</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Normal</td>
<td>75</td>
</tr>
<tr>
<td>Fatty</td>
<td>36</td>
</tr>
<tr>
<td>Total</td>
<td>111</td>
</tr>
</tbody>
</table>

Both age groups of young age from 17-25 shows that 45 to 46 patients had fatty liver, which indicates that the presence of PCOS at the young age group females with hormonal issues can cause fatty liver.

Table 3: Cross tabulation of age group with fatty liver

<table>
<thead>
<tr>
<th>Age Group * Echotexture Crosstabulation</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal</td>
</tr>
<tr>
<td>17-20</td>
<td>51</td>
</tr>
<tr>
<td>20-25</td>
<td>78</td>
</tr>
<tr>
<td>25-30</td>
<td>33</td>
</tr>
<tr>
<td>Total</td>
<td>162</td>
</tr>
</tbody>
</table>

Both age groups of young age from 17-25 shows that 45 to 46 patients had fatty liver, which indicates that the presence of PCOS at the young age group females with hormonal issues can cause fatty liver. The age groups 20-25 had highest incidence of PCOS showing 73 patients.

Table 4: Cross tabulation of age group with PCOS

<table>
<thead>
<tr>
<th>Age Group * PCOS Crosstabulation</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
</tr>
<tr>
<td>17-20</td>
<td>41</td>
</tr>
<tr>
<td>20-25</td>
<td>51</td>
</tr>
<tr>
<td>25-30</td>
<td>19</td>
</tr>
<tr>
<td>Total</td>
<td>111</td>
</tr>
</tbody>
</table>
DISCUSSION

The objective of the assessment was to explore the association between liver fat and
vivo insulin affectability, body game plan, stomach adiposity, and lipid
processings in enormous adolescent young women with polycystic ovary jumble (PCOS). All individuals were
overweight/weighty young women in pre-adulthood with a wide extent of body creation, midsection outskirts, and
adiposity. Through and through liver diminishing was inside a normal range for all subjects (29.5-75.3 HU). Fatty liver
was accessible in 6.7% individuals (6.7%) [20]. Brozowska et al., inspected Productive Therapy of Polycystic Ovarian
Condition, Nonalcoholic Fatty Liver Disorder and Pointlessness with Chinese Local Drug. This case report
uances a long-term older individual with hyperlipidemia, Nonalcoholic Fatty Liver Disease (NAFLD), Polycystic
Ovarian Condition (PCOS) and unproductiveness. Her debilitated liver limit has thwarted the usage of medication
 drugs (statins and metformin) [21]. The patient in this manner went through two periods of Chinese local
medicine treatment: the essential condition to upgrade hyperlipidemia and amenorrhea; and the resulting recipe
to further develop ovarian brokenness similarly as glucose and lipid processing. Of course, a blend of remedies to treat
PCOS and NAFLD simultaneously can struggle. The outcome of this case report showed that CHM may be
strong for complex metabolic and conceptive issues with infertility [16]. Faisal et al., induced that PCOS is a tangled
contamination related with various organs, which furthermore shows association with the inescapability of
NAFLD. In this manner it's crucial to separate metabolic issues PCOS patients [22]. To investigate the clinical signs,
endocrinological and metabolic properties of polycystic ovary syndrome (PCOS) in women of childbearing women
(over in pubescence) and its association with nonalcoholic fatty liver disease (NAFLD), especially center
around separate differentiations in metabolic characters when PCOS was joined by alcoholic fatty liver or not. Clinical
indications, endocrinological and metabolic characteristics of 50 PCOS patients and 50 non PCOS patients that visited the Endocrinological Part of the At first. Joined forces Clinical center of Nanjing Clinical School from 2008 to 2009 were examined [23]. Center
anthropometric elements including inescapability of NAFLD, insulin opposition (IR), ALT levels were checked
between the two get-togethers out. Among the 50 patients of PCOS patients, 34 were of childbearing age and 14 were
in pubescence. Their supervisor whimpers are oligomenorrhea, arm ovulation, barrenness and clinical
signs associated with hyper androgen including hirsutism, skin break out, alopecia. The metabolic issues integrate fat
or overweight, diabetes or incapacitated glucose
resilience, hypertension, nonalcoholic fatty liver and lipid disturbance [24, 25].

CONCLUSIONS

This study shows a strong relationship between young girls with polycystic ovaries and non-alcoholic fatty liver
disease. The research's findings are consistent with the idea that PCOS is more common in people with NAFLD and
vice versa. The similarities between both diseases and the metabolic syndrome underscore the significance of taking
PCOS and NAFLD's relationships into consideration. The study highlights the need for routine NAFLD screens for
PCOS, diabetes mellitus, and metabolic risk factors in addition to NAFLD screenings for women with PCOS. The
findings have therapeutic significance for PCOS and NAFLD management in young girls, including early
detection, targeted therapies, and better management.

Authors Contribution

Conceptualization: TM
Methodology: MAN
Formal analysis: AA, MAN
Writing-review and editing: TM, AJ

All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

Source of Funding

The authors received no financial support for the research, authorship and/or publication of this article.

REFERENCES

