Original Article

Cross-Cultural Adaptation and Psychometric Testing of the Urdu version of Copenhagen Neck Functional Disability Scale

Somiya Naz¹, Muhammad Nazim Farooq¹, Ahsnat Iqbal¹, Tahniat Zehra Naqvi¹ Sahibzada M Fazal Ur Rasul¹

Islamabad College of Physiotherapy, Margalla Institute of Health Sciences, Rawalpindi, Pakistan

INTRODUCTION

Neck pain is one of the common problems among people. Different measures have been developed to assess the rate of neck pain and disabilities. Patients with neck pain frequently use and easily understand the Copenhagen neck functional disability scale (CNFDS). **Objective:** To cross-culturally adapt and translate CNFDS into Urdu and examine the psychometric properties of Urdu version of CNFDS (CNFDS-U) in individuals with non-specific neck pain (NSNP). **Methods:** The CNFDS was translated into Urdu and cross-culturally adapted in compliance with the established standards. This study was carried out on 200 patients having neck pain and 50 healthy respondents. The CNFDS-U, Neck Bournemouth Questionnaire (NBQ), and Neck Pain Disability Index Urdu version (NDI-U) were all completed by a combined 200 individuals with NSNP and 50 healthy subjects. The patients with NSNP completed the aforementioned questionnaires and Global Rating of Change Scale (GROC) following three weeks of physiotherapy. CNFDS-U was evaluated for psychometric testing. **Results:** The CNFDS-U shows excellent internal consistency (α = 0.84) and test-retest reliability (ICC =0.97). Regarding construct validity, moderate correlations exist between CNFDS-U and NBQ (r=0.51, p<0.001) and CNFDS-U and NDI-U (r=0.64, p<0.001). Its responsiveness was demonstrated by a statistically significant difference in CNFDS-U change scores between improved and stable groups (p<0.001). **Conclusions:** The CNFDS-U is a valid, reliable, and responsive scale for evaluating NSNP in populations that can understand Urdu.
Jorden et al., in 1998 to measure neck pain & disability [10]. It is the Danish-authorized questionnaire which was originally developed in English language and translated into Brazilian, Arabic, Italian, Iranian, Turkish, Persian, French, Polish, and Chinese [11-19]. Assessing neck pain also requires taking into account how it affects social and emotional facets of daily life in addition to how it affects physical functionality [10]. The CNFDS excels in this area since it addresses neck pain, daily activities, and social interactions. Therefore, CNFDS might be a better tool if a more comprehensive assessment is required. As this scale has still not been translated into Urdu, the goal of this investigation was to translate and cross-culturally adapt CNFDS in Urdu as well as examine the psychometric features of CNFDS-U in patients with NSNP.

METHODS

This was a translation, cultural adaptation, and psychometric evaluation study. For the sample size, 10 subjects per item of instrument were taken into consideration as guided for general psychometric testing [20]. The minimum sample size required was 150 and data were collected from 200 patients and 50 healthy participants from multiple settings in Rawalpindi/Islamabad using convenient sampling technique. The study was conducted over a period of one year from April, 2022 to March, 2023, following approval from ethics review committee of the Margalla Institute of Health Sciences. All participants provided their informed written consent and after obtaining permission from the tool developer, this tool has been translated into Urdu. Convenient sampling technique was used to gather data who met inclusion criteria, including patients with NSNP, both genders between ages of 18 and 65, patients able to read Urdu and fifty healthy participants between ages of 18 and 65 with no history of neck pathology or pain. The study did not include patients with diagnosed psychiatric conditions, myelopathy, neck or brain surgery/vertebral fractures within last three months, neurological impairments, infections/inflammation, tumors, or systemic disorders and healthy participants who were not willing to participate were not included in study. On the first day, all participants were requested to complete a self-structured questionnaire for demographic information as well as the CNFDS-U, NDI-U, and NBQ. 48 hours after the initial response, 46 randomly chosen patients were asked to complete the CNFDS-U form once more. Patients receive routine physical therapy session for 3 weeks as per advised by his/her consultant therapist. After three weeks, patients were asked to complete these questionnaires again along with the GROC scale. The CNFDS is a valid and reliable self-reported scale consisting of 15 questions that assess the effects of neck pain, including patient’s views of those impacts in their future (Questions 1, 5 & 15), disability during daily activities (Questions 2, 3, 4, 5, 7, 8, 9, 10 & 12), and social and recreational activities (Questions 6, 9, 11, 13 & 14). For calculating scores following procedures are considered. For items 1 to 5 “yes” =0, “sometimes” =1, and “no” = 2. For items 6 to 15 the answer “yes” =2, “sometimes” =1, and “no” =0. Thus, having a total score i.e. 0 to 30, with higher scores indicating greater disability [10]. The NDI-U has ten sections. Each item has six distinct claims that range from 0 to 5, with 0 denoting no disability and 5 denoting the greatest degree of disability. The highest possible total score is 50, which is expressed in percentage. The higher scores represent greater disability. Its reliability and validity have been proven in literature [21].

The NBQ is a reliable and valid tool that consists of seven items. On 11-point numerical rating scale (0–10), each question receives a score. The BQN has a maximum score of 70 points [9, 22]. The GROC is a 15-point scale designed to assess how much a patient believes their pain has become worse or better over time. Patients were asked to rank the general health of their neck from -7 ("very much worse") to +7 ("very much better") since the commencement of treatment. The GROC scale offers good sensitivity and reproducibility and is simple to use [23]. The translation and cultural adaptation were based on the Beaton et al., recommendations [24]. First, two forward translations were made of questionnaire from English in Urdu by two bilingual experts who were native Urdu speakers. Translator I was Physical therapist and aware of the study’s purpose and content, while Translator II was linguistic expert had no medical background. Then the translators and two researchers synthesized results of translations (T1 & (T2) following discussion of any modifications, producing a common translation (T-12). The T-12 version was then independently translated back into English by two translators. The back-translations (BT1 & BT2) were produced by two bilingual translators and they preferably lacked a medical background and were unaware of the concepts presented. An expert committee including all translators, researchers and one senior physical therapist, discussed all translated versions and finally developed pre-final Urdu version of questionnaire, to establish parity between the English and Urdu versions, important judgements must be made. The pre-final CNFDS-U was tested 40 patients for face validity. The final CNFDS-U was developed and subjected to further psychometric testing. The Cronbach’s alpha (α) was used to evaluate the CNFDS-U’s internal consistency [25]. When Cronbach’s alpha is between 0.6 and 0.80, it is considered good, and when α is between 0.81 and 0.95, it is taken as excellent [26]. In order to conduct a test-retest, a randomly selected group from the sample completed the CNFDS-U during their second
RESULTS

Following predefined guidelines, original CNFDS was translated into Urdu and culturally adapted. While returning to context of original version, the entire adaptation procedure was completed without encountering any linguistic difficulties or conceptual misunderstandings. The CNFDS-U was completed by 40 participants with NSNP during preliminary testing. Because it was short and clearly related to their current problem, participants had no trouble filling it out. The preliminary test results showed no issues with vocabulary or subject matter used in Urdu version. The CNFDS-U was therefore accepted without any modifications to original tool. A total 250 participants were enrolled in this study, including 200 patients having NSNP and 50 healthy participants. Of 200 patients, 7 were excluded due to having infectious disease, systemic disease, or neurological deficit. Thus 193 patients were finally included, but responsiveness was analyzed at sample size of 188 because 5 patients were dropped out due to altered duty timing, migration, or transportation issues. The demographic and clinical characteristics of participants are shown in table 1.

Table 1: The Demographics data and participants characteristics

<table>
<thead>
<tr>
<th>Variables</th>
<th>Patient Group (n=193) Mean ± SD N/%</th>
<th>Healthy Group (n=50) Mean ± SD N/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>27.74 ± 9.27</td>
<td>24.10 ± 6.34</td>
</tr>
<tr>
<td>BMI</td>
<td>23.94 ± 5.67</td>
<td>23.56 ± 5.10</td>
</tr>
<tr>
<td>Neck Pain duration in months</td>
<td>7.03 ± 11.35</td>
<td>N/A</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>92 (47.7%)</td>
<td>11 (22%)</td>
</tr>
<tr>
<td>Female</td>
<td>101 (52.3%)</td>
<td>39 (78%)</td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>128 (66.3%)</td>
<td>43 (86%)</td>
</tr>
<tr>
<td>Married</td>
<td>61 (31.6%)</td>
<td>7 (14%)</td>
</tr>
<tr>
<td>Divorced</td>
<td>2 (1%)</td>
<td>0</td>
</tr>
<tr>
<td>Widowed</td>
<td>2 (1%)</td>
<td>0</td>
</tr>
<tr>
<td>Qualification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matric</td>
<td>32 (16.8%)</td>
<td>0</td>
</tr>
<tr>
<td>Intermediate</td>
<td>101 (52.3%)</td>
<td>43 (86%)</td>
</tr>
<tr>
<td>Graduate</td>
<td>44 (22.8%)</td>
<td>4 (8%)</td>
</tr>
<tr>
<td>Postgraduate</td>
<td>16 (8.3%)</td>
<td>3 (6%)</td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employed</td>
<td>87 (45.1%)</td>
<td>18 (36%)</td>
</tr>
<tr>
<td>Unemployed</td>
<td>106 (54.9%)</td>
<td>32 (64%)</td>
</tr>
<tr>
<td>CNFDS-U(0-30)</td>
<td>10.48 ± 6.28</td>
<td>0</td>
</tr>
<tr>
<td>NBQ(0-70)</td>
<td>29.08±14.38</td>
<td>0</td>
</tr>
<tr>
<td>NDI-U(0-50)</td>
<td>14.26±9.27</td>
<td>0</td>
</tr>
</tbody>
</table>

The results showed excellent test-retest reliability for CNFDS-U (ICC = 0.97, 95% CI=0.94-0.98). An excellent Internal consistency was also obtained (α = 0.84). The mean and reliability results of each item and total score are shown in table 2.
The results depicted a statistically significant difference in CNFDS-U total score between patients and healthy group \((p< 0.001)\), indicating discriminate validity. The results revealed a significant difference \((p< 0.001)\) in CNFDS-U change scores between the two groups, with the improved group \((8.73 \pm 7.71, n=154)\) having a higher change score than the stable group \((3.62 \pm 7.56, n=34)\). Moderate correlations exist between CNFDS-U, NBQ and NDI-U change score as shown in Table 4.

Table 4: Shows correlation among CNFDS-U, NDI-U & NBQ change scores

<table>
<thead>
<tr>
<th>Scales</th>
<th>CNFDS-U CHANGE SCORE ((n=187))</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDI-U CHANGE SCORE</td>
<td>0.63</td>
<td><0.001</td>
</tr>
<tr>
<td>NBQ CHANGE SCORE</td>
<td>0.61</td>
<td></td>
</tr>
</tbody>
</table>

DISCUSSION

The CNFDS-U questionnaire was adapted from original CNFDS with no major changes made. The study's participants were predominately female which is consistent with studies done in past. In present study, participant's average age was 31.40 years, which is similar to Persian version's participant's average age (32.70 years) but less than participant's mean age in earlier research, which ranged from 43.05 to 54.3 years \([13-16, 18]\). The present study enrolled patients having NSNP, but it excluded people whose neck pain was brought on by other underlying illnesses including arthritis, myelopathy, neurological impairments, etc. that were associated with advancing age. This discrepancy may be result of this exclusion. The CNFDS-U showed excellent reliability in terms of test-retest \((\text{ICC} = 0.97)\). The ICC values in earlier researches ranged from 0.93 to 0.99 \([11-14, 17, 19]\), with exception of Turkish version, which exhibited lower ICC values, i.e. 0.86 \([15]\). The longer interval (7 days) between test and retest can be credited for lower ICC value in this version. The CNFDS-U was determined to have excellent internal consistency \((\alpha =0.84)\). Similar to this, Cronbach alpha for CNFDS Italian and French version was 0.83.
Brazilian and Iranian version was 0.84, and Arabic version was 0.85, however, range of Cronbach’s alpha for versions in English, Polish and Persian was 0.90 to 0.92 [10, 11, 13, 14, 16-18]. The participants responded to all 15 items of CNFDS-U questionnaire so there were no missing values. The CNFDS-U showed no floor or ceiling effects in this investigation, these findings are consistent with Brazilian, Polish, and Italian versions of CNFDS [11, 13, 18]. A one-factor structure was found in this investigation. Although two-factor structure with Eigenvalues greater than 1.0 were found, however, only one factor had variance greater than 10%, accounting for 43.6% of the variation and corresponding to Scree plot’s elbow or point of inflection. Therefore, one-factor structure was concluded. In both English and Brazilian versions of CNFDS, a single-dimension factor was identified [10, 14]. In Italian version, Exploratory factor analysis showed that first component (eigenvalue = 4.12) explained 83% of overall variability whereas second factor (eigenvalue = 0.65) explained just 13%. The second to first eigenvalue ratio was 6.36 so Angilecchia et al., concluded unidimensional of CNFDS-Italian version [13]. In contrast, Persian version demonstrated a three-factor structure of CNFDS while Chinese version found two factors [16, 19]. It is possible that differences in cultural attitudes towards disability can account for this discrepancy in results. CNFDS-U has good construct validity, as evidenced by significant moderate correlations between CNFDS-U and NBO (r=0.51), and NDI-U (r=0.64). However, Strong correlations between CNFDS and NDI in Italian (r=0.85), Brazilian (r=0.72), Persian (r=0.73), Chinese (r=0.76) versions were observed [11, 13, 16, 19]. Strong correlation between CNFDS and NBO were found in Chinese translation (r=0.60) [13, 19]. The CNFDS-U was found to have good responsiveness, consistent with Iranian version [14]. The current study found statistically significant differences (p<0.001) in CNFDS-U change scores between stable and improved group. There were moderate correlations found between change scores of CNFDS-U and NBO (r=0.61), and NDI-U (r=0.63), similar to this, Chinese version showed a moderate correlation between CNFDS and NDI change score (r=0.43) [19]. This investigation has several limitations. Firstly, it is uncertain whether findings can be generalized to individuals with other causes of neck pain because only NSNP patients were included in this study. As individuals weren’t chosen using a random technique, sample bias might also be present. The strength of this study is novelty of adapting CNFDS for Urdu-speaking population and conducting psychometric analysis of CNFDS-U. Additionally, translation of instrument and examination of its psychometric properties followed standards-based criteria.

CONCLUSIONS

The current study depicted that CNFDS-U is a valid, reliable, and responsive scale that may be used to evaluate pain and functional limitations in NSNP patients among Urdu speaking population.

Authors Contribution

Conceptualization: SN, MNF, AI, TZN, SMFR
Methodology: SN, MNF, AI, TZN, SMFR
Formal analysis: SN, MNF, AI, TZN, SMFR
Writing-review and editing: SN, MNF, AI, TZN, SMFR

All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

Source of Funding

The authors received no financial support for the research, authorship and/or publication of this article.

REFERENCES

