The human brain is the most complicated organ of the human body, lying in the cranial cavity. The brain consists of 100 billion connected nerves which are communicating altogether through trillions of synapses [1, 2]. A normal adult human brain weighs roughly 3 pounds and weighs between 1300 and 1400 grams and measures roughly 15 centimeters in length [3, 4]. The human brain is made up of around 100 billion neurons, which are a structural and functional unit of brain contains more than 100,000 kilometers of interconnections [5, 6]. These astounding figures have led to the conclusion that our cognitive skills are almost limitless [7]. The loss of neurons and decrease in connections between neurons is known as brain atrophy (cerebral atrophy) [8]. Cerebral palsy, dementia, and viral disorders are just a few of the ailments that induce brain shrinkage. The symptoms and degree of brain shrinkage vary depending on the illness and the site of injury. Brain cells can be damaged and atrophy can result from injuries, disorders, and infections [9]. The trauma, diabetes and hypertension are two prevalent risk factors that have been linked to cognitive impairment in old age, hence the use of smoking and alcohol can also contribute in impairment due to brain atrophy [10]. Cerebral atrophy is a condition that affects all individuals especially in old age. However, a variety of factors can increase cell loss, including damage, infection, and medical diseases including dementia, stroke, and Huntington's disease [6]. These situations can occasionally result in more serious brain injury and can be life-threatening [11]. The signs and symptoms of brain atrophy differ in all individuals because it is depending on which part of the brain is affected and affects such as loss of memory, disturbed learning & abstract thinking, and...
The symptoms of brain atrophy include seizures which are eruptions of abnormal electrical activity in the brain. The signs involve sudden and repeated jerky movements, loss of consciousness and convulsions. In some cases some patients also experience aphasia, a condition in which people have difficulty speaking and understanding language. The different areas of the brain might be affected by atrophy. Focal atrophy: It is a condition that affects cells in specific parts of the brain, resulting in a loss of function in those areas. The focal cerebral atrophy can be due to history of ischemic injury and trauma. Hemorrhage and contusion can also cause focal atrophy in the specific site of brain affected. Some neurodegenerative diseases showing dementia and cognitive impairment are as Alzheimer disease, Pick disease, Parkinson disease, Huntington disease. Generalized Atrophy: It is a condition in which brain cells all across the brain are affected. It can be due to increasing age, alcohol & drug use, end stage multiple sclerosis, post traumatic, post infective and some neurodegenerative diseases. Normal brain ageing refers to age-related structural changes and function of the human brain that occurs in the general population but do not cause clinically significant impairments. The shrinkage of brain happens in the specified sites; it doesn't get involved in every part of the brain. That is how it differs from focal and generalized atrophy. The brain shrink is likely to get worse with the age as you become older and some areas of the brain, while some parts of the brain may shrink more quickly than other. Due to this the parameters are used for the identification and measurement of brain atrophy. The individual in the age of 30s or 40s the size of the brain starts to decline with increasing age. The shrinkage may accelerate more quickly after you reach 60. With increasing age, the cerebral cortex become wrinkled outer and thins away. All areas of the brain perform specific functions. The atrophy in specific area can have function disturbed as the frontal lobe controls the recalling of memory and emotions. The brain atrophy in frontal lobe can also affects control of impulses, skills of problem solving, ability of social interaction, and motor functional responses. A common site for atrophy is temporal lobe located behind the ears, which functions to interpret words to talk, how to read and write, and connection of words and their meanings, might also show signs of thinning. The current study will imply that normal brain will result in brain atrophy with increasing age. The brain atrophy can occur due to aging, trauma, diabetes and neurodegenerative diseases such as Alzheimer, Parkinson, Pick's and Huntington disease which can impacts cognition and mental disturbance in older life. The study findings will explain the clinical consequences of ischemic injury, brain neurodegeneration, and the onset of clinical symptoms of cognitive impairment followed by brain atrophy. This data will provide important clinical context for interpreting changes in brain size linked with age, trauma and other pathologies related with trauma.

**M E T H O D S**

It was a Cross sectional study conducted in Medcare international hospital, Gujranwala, Pakistan. The data were collected using convenient sampling technique from February 2022 to May 2022 after informed and written consent. A sample size of 60 was calculated using mean from previous published studies. The age group considered was maximum of 100 years and minimum of 20 years old. The study included all the patients who had focal atrophy due trauma, ischemic stroke, post infective and neurodegenerative diseases showing dementia and cognitive impairment due to as Alzheimer disease, Pick disease, Parkinson disease, Huntington disease. The study also included generalized atrophy due to increasing age, alcohol & drug use, end stage multiple sclerosis. The patients other than brain atrophy were excluded from the study. The equipment used for the evaluation was Toshiba Aquilion 64 slices CT scanner with Peak voltage 120kvp, 300mA, 64 detectors, 20-25 FOV, and 3 to 5 mm slice thickness. The soft tissue reconstruction was done on Kernel FC64, acquisition.

**R E S U L T S**

The results of current study were based on 60 patients. The age considered was maximum of 100 and minimum of 20 years old. The quantitative data age was calculated as descriptive statistics mean ± standard deviation, maximum, minimum and range. The qualitative data like gender frequency and percentage was calculated and displayed in the form of table and bar chart. The findings evaluated on Computed Tomography, signs and symptoms and risk factors are mentioned as frequency and percentage displayed in the form of tables and bar charts. The total of 60 patients were included in the study. The patients had minimum age of 57 years and maximum age of 91 with age range of 34. The mean age was 78.8 ± 9.2. According to gender distribution males were most frequent having 34(56.7%) and females having frequency of 26(43.3%). The Table 1 shows the type of brain atrophy that patients were suffering in which the most common was generalized brain atrophy with 46(76.7%). The focal atrophy due to post trauma was 14(23.3%).

<table>
<thead>
<tr>
<th>Type of brain atrophy</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focal</td>
<td>14</td>
<td>23.3</td>
</tr>
<tr>
<td>Generalized</td>
<td>46</td>
<td>76.7</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 1: Frequency distribution of type of brain atrophy in patients.
The loss of mental activity paralleled the progression of years of age, the mean BVI fell statistically significantly. After 40 that brain atrophy was common in elder age up to 70 to 99 commonly occurring in old age. Chrzan (2019) also found 79.88 ± 9.22 which showing that the cerebral atrophy was alcohol & drug use, end stage multiple sclerosis. The study also included generalized atrophy due to increasing age, alcohol & drug use, end stage multiple sclerosis. The current study found that the most common brain atrophy was due to old age 42(70%) following post traumatic 9(15%) and Alzheimer 4(6.7%). The current study has similar results with the previous literature which was evaluated on Computed Tomography having almost same protocols. Another study by Zahid (2015) found aging one of the most common factors linked to shrinkage of brain (atrophy) followed by Alzheimer disease and trauma [23]. The diagnoses of Alzheimer’s disease, neuropathy, tumor, and alcoholism were all ruled out. The study used conventional Computed Tomography using Toshiba equipment in helical, using voltage of 120 kVp, the tube current of 300mA, and the slice thickness of 3 to 5m. The use of alcohol and smoking was also reported in the current study as the patients with atrophy had history of smoking 30(39%) and alcohol use 13(16.9%). The age related brain atrophy is a progressive process that affects elder people much more than young. The current and previous studies used Computed tomography to evaluated brain. Cerebral atrophy can be detected using both CT and MRI. Literature shows that MRI could be a better modality for studying soft tissues structures. MRI became a natural choice for studying brain atrophy due to visualization of soft tissue structures but Computed Tomography is more routinely used in clinical practice due to availability and reliability. CT is used for nearly all emergency imaging in the developing world due to its quick evaluation. CT imaging is also commonly utilized in neurosurgery and neuro diagnosis because to its comparatively short scanning time, reduced motion artifacts, and inexpensive cost. The current findings have explained the clinical consequences of ischemic injury, brain neurodegeneration, and the onset of clinical symptoms of cognitive impairment followed by brain atrophy. This data provided important clinical context for interpreting changes in brain size is linked with age, trauma and other pathologies related with trauma and resulting in brain atrophy.

**DISCUSSION**

The current study included all the patients who had focal atrophy due trauma, ischemic stroke, post infective and neurodegenerative diseases showing dementia and cognitive impairment due to Alzheimer disease, Pick disease, Parkinson disease, Huntington disease. The study also included generalized atrophy due to increasing age, alcohol & drug use, end stage multiple sclerosis. The current study found that the mean age of patients was 79.88 ± 9.22 which showing that the cerebral atrophy was commonly occurring in old age. Chrzan (2019) also found that brain atrophy was common in elder age up to 70 to 99 [24]. The previous study showed brain atrophy measures having significant differences amongst the age. After 40 years of age, the mean BVI fell statistically significantly. The loss of mental activity paralleled the progression of brain shrinkage, which increased with age, trauma, and Alzheimer’s disease. The previous literatures such as (Chrzan, 2019) evaluated the cause of brain atrophy as age related and due to trauma and neurodegenerative disease such as Alzheimer’s disease [24]. The current study found the most common brain atrophy was due to old age 42(70%) following post traumatic 9(15%) and Alzheimer 4(6.7%).

**CONCLUSION**

In conclusion, the current study found that brain atrophy is the loss of connections between neurons. It can be due to old age, trauma, ischemic stroke, multiple sclerosis, post infective and neurodegenerative diseases such as Alzheimer and Parkinson disease. The study also reported the association of brain atrophy with the previous history of diabetes, smoking and alcohol use. The patients had memory problems, poor judgment, loss of language, mood and personality changes and less frequently seizures. The age related brain atrophy is a progressive process that

<table>
<thead>
<tr>
<th>Risk factors of brain atrophy</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic history of neuro-degenerative diseases</td>
<td>4</td>
<td>5.2</td>
</tr>
<tr>
<td>Head/ Brain injury</td>
<td>9</td>
<td>11.7</td>
</tr>
<tr>
<td>Infection</td>
<td>4</td>
<td>5.2</td>
</tr>
<tr>
<td>Alcohol use disorder</td>
<td>13</td>
<td>16.9</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>15</td>
<td>19.5</td>
</tr>
<tr>
<td>Smoking</td>
<td>30</td>
<td>39.0</td>
</tr>
<tr>
<td>Total</td>
<td>75</td>
<td>97.4</td>
</tr>
<tr>
<td>Total</td>
<td>77</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 2: Frequency distribution of clinical history patients

Table 3 shows that the patients of brain atrophy had common symptoms such as Memory problems 25(33.3%), poor judgment 13(17.3%), loss of language 11(14.7%), mood and personality changes 10(13.3%) and seizures 7(9.3%).

<table>
<thead>
<tr>
<th>Signs and symptoms of brain atrophy</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hallucinations</td>
<td>9</td>
<td>12.0</td>
</tr>
<tr>
<td>Loss of language</td>
<td>11</td>
<td>14.7</td>
</tr>
<tr>
<td>Memory problems</td>
<td>25</td>
<td>33.3</td>
</tr>
<tr>
<td>Mood and personality changes</td>
<td>10</td>
<td>13.3</td>
</tr>
<tr>
<td>Poor judgment</td>
<td>13</td>
<td>17.3</td>
</tr>
<tr>
<td>seizures</td>
<td>7</td>
<td>9.3</td>
</tr>
<tr>
<td>Total</td>
<td>75</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 3: Frequency distribution of signs and symptoms of brain atrophy in patients

Table 4 shows that the most common brain atrophy was due to old age 42(70%) following post traumatic 9(15%) and Alzheimer 4(6.7%).

<table>
<thead>
<tr>
<th>Signs and symptoms of brain atrophy</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age related brain atrophy</td>
<td>42</td>
<td>70.0</td>
</tr>
<tr>
<td>Post traumatic</td>
<td>9</td>
<td>15.0</td>
</tr>
<tr>
<td>Post infective</td>
<td>3</td>
<td>5.0</td>
</tr>
<tr>
<td>Multiple sclerosis</td>
<td>1</td>
<td>1.7</td>
</tr>
<tr>
<td>Alzheimer disease</td>
<td>4</td>
<td>6.7</td>
</tr>
<tr>
<td>Parkinson disease</td>
<td>3</td>
<td>1.7</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 4 shows that the most common brain atrophy had history of smoking 30(39%) and alcohol use 13(16.9%). The age related brain atrophy is a progressive process that affects elder people much more than young. The current and previous studies used Computed tomography to evaluated brain. Cerebral atrophy can be detected using both CT and MRI. Literature shows that MRI could be a better modality for studying soft tissues structures. MRI became a natural choice for studying brain atrophy due to visualization of soft tissue structures but Computed Tomography is more routinely used in clinical practice due to availability and reliability. CT is used for nearly all emergency imaging in the developing world due to its quick evaluation. CT imaging is also commonly utilized in neurosurgery and neuro diagnosis because to its comparatively short scanning time, reduced motion artifacts, and inexpensive cost. The current findings have explained the clinical consequences of ischemic injury, brain neurodegeneration, and the onset of clinical symptoms of cognitive impairment followed by brain atrophy. This data provided important clinical context for interpreting changes in brain size is linked with age, trauma and other pathologies related with trauma and resulting in brain atrophy.

**DISCUSSION**

The current study included all the patients who had focal atrophy due trauma, ischemic stroke, post infective and neurodegenerative diseases showing dementia and cognitive impairment due to Alzheimer disease, Pick disease, Parkinson disease, Huntington disease. The study also included generalized atrophy due to increasing age, alcohol & drug use, end stage multiple sclerosis. The current study found that the mean age of patients was 79.88 ± 9.22 which showing that the cerebral atrophy was commonly occurring in old age. Chrzan (2019) also found that brain atrophy was common in elder age up to 70 to 99 [24]. The previous study showed brain atrophy measures having significant differences amongst the age. After 40 years of age, the mean BVI fell statistically significantly. The loss of mental activity paralleled the progression of brain shrinkage, which increased with age, trauma, and Alzheimer’s disease. The previous literatures such as (Chrzan, 2019) evaluated the cause of brain atrophy as age related and due to trauma and neurodegenerative disease such as Alzheimer’s disease [24]. The current study found the most common brain atrophy was due to old age 42(70%) following post traumatic 9(15%) and Alzheimer 4(6.7%). The current study has similar results with the previous literature which was evaluated on Computed Tomography having almost same protocols. Another study by Zahid (2015) found aging one of the most common factors linked to shrinkage of brain (atrophy) followed by Alzheimer disease and trauma [23]. The diagnoses of Alzheimer’s disease, neuropathy, tumor, and alcoholism were all ruled out. The study used conventional Computed Tomography using Toshiba equipment in helical, using voltage of 120 kVp, the tube current of 300mA, and the slice thickness of 3 to 5m. The use of alcohol and smoking was also reported in the current study as the patients with atrophy had history of smoking 30(39%) and alcohol use 13(16.9%). The age related brain atrophy is a progressive process that affects elder people much more than young. The current and previous studies used Computed tomography to evaluated brain. Cerebral atrophy can be detected using both CT and MRI. Literature shows that MRI could be a better modality for studying soft tissues structures. MRI became a natural choice for studying brain atrophy due to visualization of soft tissue structures but Computed Tomography is more routinely used in clinical practice due to availability and reliability. CT is used for nearly all emergency imaging in the developing world due to its quick evaluation. CT imaging is also commonly utilized in neurosurgery and neuro diagnosis because to its comparatively short scanning time, reduced motion artifacts, and inexpensive cost. The current findings have explained the clinical consequences of ischemic injury, brain neurodegeneration, and the onset of clinical symptoms of cognitive impairment followed by brain atrophy. This data provided important clinical context for interpreting changes in brain size is linked with age, trauma and other pathologies related with trauma and resulting in brain atrophy.

**CONCLUSION**

In conclusion, the current study found that brain atrophy is the loss of connections between neurons. It can be due to old age, trauma, ischemic stroke, multiple sclerosis, post infective and neurodegenerative diseases such as Alzheimer and Parkinson disease. The study also reported the association of brain atrophy with the previous history of diabetes, smoking and alcohol use. The patients had memory problems, poor judgment, loss of language, mood and personality changes and less frequently seizures. The age related brain atrophy is a progressive process that
affects elder people much more than young and CT is useful
for nearly all neuro diagnosis including brain atrophy. CT
scan is preferred over MRI because of its comparatively
shorter scanning time, easy accessibility, reduced motion
artifacts and inexpensive cost.

REFERENCES

Interface. Front Neuroscience. 2019 Mar; 13:112. doi:

[2] Suarez AM, Martinez ME, Mendoza LR. Brain and
learning. International Journal of Social Sciences
and Humanities. 2019; 3(2):128-35. doi.org/10.29332/
ijsshh.v3n2.302.

[3] Eickhoff SB, Yeo BTT, Genon S. Imaging-based
parcellations of the human brain. Nature Reviews
Neuroscience. 2018 Nov; 19(11):672-686. doi:
10.1038/s41583-018-0071-7.

10.1038/nature25032.

[5] Sedmak J, Judaš M. The total number of white matter
interstitial neurons in the human brain. Journal of
13018.

W, et al. Deep learning for Alzheimer’s disease:
Mapping large-scale histological tau protein for
neuroimaging biomarker validation. NeuroImage.

as personalization feedback for socially-assistive
robots and cognitive training. Technologies. 2018
May; 6(2):49. doi.org/10.3390/technologies6020049.

[8] Andravizou A, Dardiotis E, Artemiadis A, Sokratous M,
sclerosis: mechanisms, clinical relevance and
treatment options. Auto Immune Highlights. 2019 Aug;

Alzheimer’s Disease Neuroimaging Initiative (ADNI).
Type 2 diabetes mellitus, brain atrophy, and cognitive
decline. Neurology. 2019 Feb; 92(8):e823-e830. doi:
10.1212/WNL.0000000000006955.

Venn AJ, et al. Type 2 diabetes, skin autofluorescence,
doi:10.2337/db14-0506.

neurodegeneration after traumatic brain injury: from
mechanisms to clinical trials in dementia. Journal of
Neurology, Neurosurgery & Psychiatry. 2019 Nov;

SL, Pelletier D. Contribution of normal aging to brain
atrophy in MS. Neurology-Neuroimmunology
Neuroinflammation. 2019 Sep; 6(6):e616. doi:
10.1212/NXI.0000000000000616.

Srikant V. Type 2 diabetes mellitus, brain atrophy and
cognitive decline in older people: a longitudinal

[14] Helfrich RF, Mander BA, Jagust WJ, Knight RT, Walker
MP. Old brains come uncoupled in sleep: slow wave-
spindle synchrony, brain atrophy, and forgetting.
Neuron. 2018 Jan; 97(1):221-230.e4. doi:

EM, Studenski SA, et al. A prospective study of focal
brain atrophy, mobility and fitness. Journal of Internal
Medicine. 2019 Jul; 286(1):88-100. doi:
10.1111/joim.12894.

Brownlee WJ, et al. Longitudinal spinal cord atrophy
in multiple sclerosis using the generalized boundary

Howieson DB, Kramer P, et al. Neuropathologic basis
of age-associated brain atrophy. JAMA Neurology.
2013.1957.

[18] Obelieniene D, Bauzaite S, Kulakieni I, Keleras E,
Eitmonaitė I, Rastenyte D. Diagnostic challenges in
multiple system atrophy. Neuropsychiatric Disease
and Treatment. 2018 Jan; 14:179-184. doi:
10.2147/NDT.S146080.

Blauw G, Jukema J, et al. Progression of brain atrophy
and cognitive decline in diabetes mellitus: a 3-year
follow-up. Neurology. 2010 Sep; 75(11):997-1002. doi:
10.1212/WNL.0b013e3181f25f06.

[20] Ghione E, Bergsland N, Dwyer MG, Hagemeier J,
Jakimovski D, Paunkoski I, et al. Aging and brain
atrophy in multiple sclerosis. Journal of
Neuroimaging. 2019 Jul; 29(4):527-535. doi:
10.1111/jon.12625.

[21] 牛田知佳. Assessment of brain atrophy in elderly
subjects with diabetes mellitus by computed
tomography: 名古屋大学; 2003.

[22] Ushida C, Umegaki H, Hattori A, Mogi N, Aoki S, Iguchi
A. Assessment of brain atrophy in elderly subjects

