DOI: https://doi.org/10.54393/pjhs.v6i8.3422

PAKISTAN JOURNAL OF HEALTH SCIENCES

(LAHORE)

https://thejas.com.pk/index.php/pjhs ISSN (E): 2790-9352, (P): 2790-9344 Volume 6, Issue 08 (August 2025)

Original Article

Frequency and Clinical Risk Factors of Pneumonia among Children with Cerebral Palsy

Bibi Hajira¹, Sana Pervez^{2*}, Seema Ashraf³, Alvina Farid⁴, Arif Mehmood Khan⁵ and Asma Abdul Qadeer⁶

Department of Pediatrics, Faroog Hospital, Islamabad, Pakistan

ARTICLE INFO

Keywords:

Cerebral Palsy, Pneumonia, Aspiration, Feeding Methods, Respiratory Infections, Pediatrics, Nutritional Status, Immunization

How to Cite:

Hajira, B., Pervez, S., Ashraf, S., Farid, A., Khan, A. M., & Qadeer, A. A. (2025). Frequency and Clinical Risk Factors of Pneumonia among Children with Cerebral Palsy: Pneumonia among Children with Cerebral Palsy. Pakistan Journal of Health Sciences, 6(8), 134-139. https://doi.org/10.54393/pjhs.v6i8.3422

*Corresponding Author:

Sana Pervez

Department of Pediatrics, Hayatabad Medical Complex, Peshawar, Pakistan sana960pervez@gmail.com

Received Date: 9th June, 2025 Revised Date: 2nd August, 2025 Acceptance Date: 11th August, 2025 Published Date: 31st August, 2025

ABSTRACT

Children with cerebral palsy (CP) are prone to various comorbidities, among which pneumonia is a leading cause of morbidity and hospitalization. Early identification of contributing factors is crucial to minimize respiratory complications. Objectives: To determine the frequency of pneumonia and identify associated clinical risk factors among children diagnosed with cerebral palsy. Methods: This cross-sectional study was conducted at the Pediatrics Unit, Khyber Teaching Hospital, Peshawar, for six months. Ninety-three children with confirmed CP were enrolled through consecutive sampling. Data on demographics, feeding methods, CP severity, nutritional status, immunization, and aspiration history were collected. Pneumonia was diagnosed clinically and radiologically. Statistical analysis was performed using SPSS version 26.0, and associations were tested using the Chi-square. Results: Among 93 children, 38 (40.9%) had pneumonia. Strong associations were observed with aspiration history ($\chi^2 = 85.14$, p<0.001, Cramer's V = 0.957), feeding method (χ^2 = 32.13, p<0.001, Cramer's V = 0.588), immunization status (χ^2 = 74.72, p<0.001, Cramer's V = 0.896), and nutritional status (χ^2 = 52.32, p<0.001, Cramer's V=0.750). Interestingly, no pneumonia cases occurred in children with severe CP or those who were severely malnourished. Conclusions: Pneumonia is highly prevalent in children with CP and is strongly linked to aspiration and oral feeding. Unexpected findings, such as the absence of pneumonia in severe CP and malnourished children, highlight the need to consider contextual exposure and monitoring factors. Targeted prevention strategies, including caregiver education, aspiration management, and individualized nutritional support, are essential to reduce respiratory complications in this vulnerable population.

INTRODUCTION

Cerebral palsy (CP) is the most common motor disability in childhood, characterized by permanent, non-progressive damage to the developing brain [1]. Beyond motor impairment, these children often experience a wide range of medical complications, among which respiratory infections, particularly pneumonia, stand out as a leading cause of morbidity and mortality [2]. International studies have repeatedly highlighted the vulnerability of children with CP to respiratory complications. A comprehensive study by Liu et al. in Taiwan revealed that nearly 41% of CP children experienced recurrent pneumonia, largely due to aspiration and poor airway clearance [3]. This underscores that airway dysfunction is a universal challenge, but local factors such as malnutrition and healthcare access may modify the risk in Pakistan. Similarly, Kuo et al. emphasized the role of oropharyngeal dysfunction in increasing the risk of lower respiratory tract infections [4], supporting the need to assess swallowing and feeding practices in our

²Department of Pediatrics, Hayatabad Medical Complex, Peshawar, Pakistan

³Department of Community Medicine and Public Health, Rehman Medical College, Peshawar, Pakistan

⁴Department of Physiology, Khyber Medical University, Institute of Medical Sciences, Kohat, Pakistan

⁵Department of Pediatrics, Women and Children Hospital, Medical Teaching Institute, Bannu, Pakistan

⁶Department of Community Medicine, Rawal Institute of Health Sciences, Islamabad, Pakistan

population. In the United States, Stevens et al. reported a higher incidence of pneumonia-related hospitalizations among children with moderate to severe CP, often linked to malnutrition and poor mobility [5]. In Pakistan, limited research has explored pneumonia in children with CP despite high rates of malnutrition, incomplete immunization, and poor caregiver awareness. Understanding these associations in our setting is essential to guide context-specific preventive strategies and resource allocation. A study conducted in Islamabad by Khan et al. reported that 38% of CP children admitted to tertiary care centers developed pneumonia [6], while Iqbal et al. from Karachi emphasized aspiration and incomplete immunization as significant predictors of pneumonia in children with neurodevelopmental disorders [7]. Despite these findings, there remains a substantial gap in localized data to inform clinical guidelines and prevention strategies in Pakistan. Generating local evidence to support early detection, caregiver education, and preventive interventions in Pakistan.

This study aims to determine its frequency and identify clinical risk factors in a tertiary care setting in Peshawar, due to the high burden and preventable nature of pneumonia in children with CP.

METHODS

The study was carried out in the Pediatrics Unit at Khyber Teaching Hospital (KTH), Peshawar, which is a tertiary care teaching hospital affiliated with Khyber Medical College. The hospital serves a large and diverse pediatric population from both urban and rural areas across Khyber Pakhtunkhwa. The data collection form was reviewed by three pediatric faculty members for face validity. The structured clinical assessment form was developed after an extensive literature review. Content validity was established by three senior pediatricians, and face validity was assessed through a pilot on 10 patients. Necessary modifications were incorporated before final data collection. Diagnostic consistency was maintained by ensuring that all assessments were performed by the same team using standardized clinical protocols. Data collection was conducted for six months, from 8th August 2019 to 8th Feb 2020, after obtaining ethical approval from the Institutional Research and Ethical Review Board (IREB) of Khyber Medical College (Approval No. 631/ADR/KMC). The required sample size was calculated using the single population proportion formula: $n = (Z^2 \times p \times (1-p))/d^2$ Here, n represents the required sample size, Z is the standard normal value at a 95% confidence level (1.96), p is the anticipated population proportion (0.40), based on Whitney et al. [8] and d is the absolute precision (0.10). Substituting these values into the formula: $n = (1.96^2 \times 0.40 \times 0.60)/(0.10^2)$ $= (3.8416 \times 0.24) / 0.01 = 0.921984 / 0.01 = 92.2$. Thus, the

minimum required sample size was 93 participants, which was achieved in this study. A non-probability consecutive sampling technique was employed to recruit participants. Inclusion Criteria were children aged 6 months to 15 years with a confirmed diagnosis of cerebral palsy. Diagnosis was established through detailed clinical and neurological assessment by a pediatric neurologist, supplemented by neuroimaging (MRI or CT) findings where available. Both male and female children were included. Patients attending outpatient clinics or admitted for any reason during the study period, and parents or guardians who gave informed consent, were eligible. Exclusion Criteria were children with congenital lung malformations or primary respiratory diseases not related to CP. Patients with incomplete medical records and those who were lost to follow-up or whose caregivers declined participation. Data were collected through a structured clinical assessment form designed specifically for this study. It included demographic details (age, gender, residence, parental education); clinical classification of CP (type and severity). Severity of CP was categorized as mild, moderate, or severe based on the Gross Motor Function Classification System (GMFCS), where mild refers to independent mobility, moderate to assisted mobility, and severe to complete dependence on caregivers. Feeding method (oral, nasogastric tube, PEG); nutritional status (assessed by pediatrician and classified as normal, underweight, or severely malnourished); immunization status (complete vs. incomplete according to the Pakistan Expanded Program on Immunization (EPI) schedule, which includes BCG, OPV, pentavalent (DPT-HepB-Hib), measles, and pneumococcal vaccines); history of aspiration or recurrent choking; and diagnosis of pneumonia (based on clinical features, chest auscultation, and radiological evidence if available). All children were evaluated by a qualified pediatrician, and data were collected confidentially in accordance with ethical standards. Data were entered and analyzed using IBM SPSS Statistics version 26.0. Descriptive statistics were used to summarize frequencies and percentages for categorical variables. The primary outcome (presence or absence of pneumonia) was assessed in terms of frequency. Chi-square tests were applied to determine associations between pneumonia and clinical risk factors (feeding method, severity of CP, nutritional status, immunization status, and aspiration history). For statistically significant results, effect sizes were calculated using Cramer's V, and Chi-square values with degrees of freedom (χ^2 , df) were reported. A p-value<0.05 was considered statistically significant.

RESULTS

The study included 93 children with cerebral palsy, with a slightly higher proportion of male, 56 (60.2%), compared to female, 37 (39.8%). The most common age group was 2–5 years, accounting for 34 (36.6%) of the participants, followed by children aged 6–10 years, 27 (29.0%), while those older than 10 years represented only 10 (10.8%). A majority of the children were from urban areas 51(54.8%), while 42 (45.2%) resided in rural settings. In terms of parental education, 38 (40.9%) had primary-level education, whereas 29 (31.2%) were illiterate, and only 26 (28.0%) had education beyond the primary level. These figures suggest that CP in the study population was more prevalent among younger children from urban and lower-educated family backgrounds (Table 1).

Table 1: Demographic Characteristics of Children with CP(n=93)

Variables	Category	Frequency (%)		
	<2 Years	22 (23.7%)		
Age Group	2-5 Years	34 (36.6%)		
Age or oup	6-10 Years	27(29.0%)		
	>10 Years	10 (10.8%)		
Gender	Male	56 (60.2%)		
Gender	Female	37(39.8%)		
Residence	Urban	51 (54.8%)		
Residence	Rural	42 (45.2%)		
	Illiterate	29 (31.2%)		
Parental Education	Primary	38 (40.9%)		
	Secondary or above	26 (28.0%)		

Spastic CP was the most common subtype observed in this cohort, affecting 61 (65.6%) of the children. Mixed-type CP was noted in 14 (15.1%), followed by athetoid 11 (11.8%) and ataxic 7 (7.5%) forms. Regarding severity, nearly half the sample, 43 (46.2%), had moderate CP, while severe and mild forms were found in 31 (33.3%) and 19 (20.4%), respectively. The majority of children, 62 (66.7%), were fed orally, but a significant proportion required assisted feeding, including 20 (21.5%) via nasogastric tubes and 11 (11.8%) via PEG tubes. Nutritional assessment showed that half of the children, 47 (50.5%), were underweight and 22 (23.7%) were severely malnourished, whereas only 24 (25.8%) had a normal nutritional status (Table 2).

Table 2: Clinical Profile of Children with CP(n=93)

Variables	Category	Frequency (%)
СР	Spastic	61(65.6%)
	Athetoid	11 (11.8%)

Table 4: Association Between Pneumonia and Clinical Risk Factors (n=93)

Variables	Category	Pneumonia Present	Pneumonia Absent	χ²(df)	p-Value	Cramer's V
	Mild	19 (100%)	0	49.12(2)	<0.001*	0.727
Severity of CP	Moderate	19 (44.2%)	24 (55.8%)			
	Severe	0	31(100%)			
	Oral	38 (61.3%)	24(38.7%)	32.13(2) <0.001*		
Feeding Method	NGT	0	20 (100%)		<0.001*	0.588
	PEG	0	11(100%)			

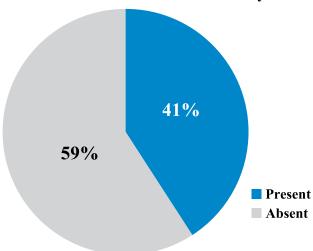
	Ataxic	7(7.5%)	
	Mixed	14 (15.1%)	
Severity of CP	Mild	19 (20.4%)	
	Moderate	43 (46.2%)	
	Severe	31(33.3%)	
	Oral	62 (66.7%)	
Feeding Method	NGT	20 (21.5%)	
	PEG	11(11.8%)	
	Normal	24 (25.8%)	
Nutritional Status	Underweight	47(50.5%)	
	Severely Malnourished	22 (23.7%)	

Among the 93 children, 38 (40.9%) had documented pneumonia, while 55 (59.1%) did not. This indicates a high burden of respiratory complications among children with cerebral palsy (Table 3).

Table 3: Frequency of Pneumonia Among Children with CP(n=93)

Pneumonia Status	Frequency (%)		
Present	38 (40.9%)		
Absent	55 (59.1%)		

Significant associations were identified between pneumonia occurrence and several clinical variables. All children with mild CP had pneumonia, whereas none with severe CP were affected ($\chi^2 = 49.12$, df = 2, p<0.001, Cramer's V = 0.727). The feeding method was also significant, with all pneumonia cases occurring in orally fed children ($\chi^2 = 32.13$, df = 2, p<0.001, Cramer's V = 0.588). Nutritional status showed an unusual trend, with pneumonia present only in normally nourished and underweight children, but absent in severely malnourished children ($\chi^2 = 52.32$, df = 2, p<0.001, Cramer's V = 0.750). Immunization status was strongly associated, as all pneumonia cases occurred in children with complete immunization ($\chi^2 = 74.72$, df = 1, p<0.001, Cramer's V = 0.896). Aspiration history showed the strongest effect, with every child who had aspiration developing pneumonia ($\chi^2 = 85.14$, df = 1, p<0.001, Cramer's V = 0.957). Interestingly, no pneumonia cases were reported among children with severe CP or those who were severely malnourished. These counterintuitive findings are noted here and are further explained in the Discussion (Table 4).


DOI: https://doi.org/10.54393/pjhs.v6i8.3422

Nutritional Status	Normal	24(100%)	0	52.32 (2) <0.001*		
	Underweight	14 (29.8%)	33 (70.2%)		<0.001*	0.750
	Severely Malnourished	0	22 (100%)			
Immunication Otatus	Complete	38 (88.4%)	5 (11.6%)	74.72 (1)	<0.001*	0.896
Immunization Status	Incomplete	0	50 (100%)			
Aspiration History	Yes	38 (95.0%)	2 (5.0%)	85.14 (1)	0.001*	0.957
Aspiration history	No	0	53 (100%)	85.14(1) <0.001*	0.957	

*p<0.05 considered statistically significant (Chi-square test)

As shown in the pie chart, pneumonia was present in approximately two-fifths, 38 (40.9%) of the participants, highlighting a substantial burden of respiratory complications in children with cerebral palsy. The remaining 55 (59.1%) did not have pneumonia (Figure 1).

Distribution of Pneumonia Among Children with Cerebral Palsy

Figure 1: Distribution of Pneumonia among Children with CP (n=93)

DISCUSSIONS

Cerebral palsy (CP) is a neurodevelopmental condition often accompanied by multiple comorbidities, with pneumonia being one of the most frequent and lifethreatening complications. In our study, the prevalence of pneumonia among children with CP was 40.9%, which aligns closely with the findings of Whitney et al. who reported recurrent pneumonia in 41% of children with severe motor dysfunction [9]. This high burden reflects the multifactorial vulnerabilities in this population, including impaired swallowing, poor airway clearance, and limited mobility. Our study found that aspiration history had the strongest association with pneumonia (p<0.001), which is consistent with several previous studies. Mpody et al. demonstrated that aspiration pneumonia was a leading cause of hospitalization in children with spastic quadriplegia [10]. Similarly, a study by Kopiyka et al. identified oropharyngeal dysphagia as a key risk factor for respiratory infections in CP children [11]. This highlights the mechanism by which aspiration contributes to pneumonia: impaired swallowing leads to misdirection of food or saliva into the airway, while reduced cough reflex prevents clearance, resulting in recurrent lower respiratory tract infections. These findings reinforce the critical role of early identification and management of swallowing dysfunction to prevent aspiration-related complications. The feeding method was another significant predictor in our study, where all pneumonia cases occurred in orally fed children, and none in those using nasogastric or PEG feeding. This result supports the idea that assisted feeding may reduce aspiration risk by bypassing dysfunctional swallowing, although it may also reflect closer monitoring and caregiver vigilance in children who require tube feeding. Previous studies have noted both benefits and risks associated with tube feeding. Aishauova et al. emphasized that while PEG feeding reduces aspiration in some cases, improper technique or reflux can still pose risks [12]. Nutritional status was also significantly associated with pneumonia. Surprisingly, all pneumonia cases were seen in children with normal nutritional status, while none of the severely malnourished children developed pneumonia. This counterintuitive finding may be explained by reduced exposure of severely malnourished children, who are often less mobile and more frequently hospitalized, thereby limiting contact with community-acquired pathogens. Alternatively, detection bias may have played a role, as severely malnourished children are more closely monitored for nutritional complications than for respiratory illnesses. This contradicts findings by Peneva et al. who observed that malnourishment increases susceptibility to infections due to weakened immunity [13]. Another unusual observation was that all pneumonia cases occurred in immunized children (p<0.001). While this finding appears contradictory to existing evidence, it may reflect confounding factors. Immunized children in our setting may be more active, socially exposed, or better documented, which increases the likelihood of pneumonia being diagnosed and recorded. Conversely, children with incomplete immunization may have lower healthcare access, resulting in underreporting. Most prior studies, including Amer et al. and Strzalkowski et al. confirm that incomplete immunization is a major risk factor for pneumonia in CP [14, 15]. Regarding the severity of CP,

DOI: https://doi.org/10.54393/pjhs.v6i8.3422

children with mild CP had the highest pneumonia frequency, while those with severe CP had none. This unexpected trend might be explained by differences in exposure: children with mild CP are more mobile, attend school or social gatherings, and therefore face greater exposure to pathogens, whereas children with severe CP remain mostly indoors and under constant supervision. Previous studies, such as Spoto et al. where severe CP was associated with increased risk due to poor cough reflex and limited mobility [16]. But our results suggest that social and environmental exposure may play a more significant role than severity alone in this context. Comparable findings were reported by Jonsson et al. who observed that pneumonia risk in CP may vary more with feeding and aspiration patterns than with gross motor function alone [17]. Furthermore, a study by Gordon et al. concluded that caregiver education and feeding practices greatly influenced respiratory outcomes, regardless of CP subtype or severity [18]. In Pakistan, local evidence remains limited, but studies highlight similar concerns. Rafigue et al. reported respiratory complications in 38% of CP patients at a tertiary center in Karachi, while Qureshi et al. emphasized aspiration and poor feeding practices as major risk factors [19, 20]. Our findings are consistent with this regional data and underline the urgent need for structured feeding assessments, aspiration prevention protocols, and caregiver training programs in Pakistani hospitals. In summary, our study reinforces existing international and local evidence that pneumonia is a significant clinical concern in children with cerebral palsy, particularly in relation to aspiration, feeding method, and immunization. Unexpected findings such as the absence of pneumonia in severe CP and severely malnourished children highlight the importance of considering contextual factors like exposure risk, caregiver behavior, and healthcare access. These insights underscore the need for tailored preventive strategies.

CONCLUSIONS

The present study identified a high frequency of pneumonia (40.9%) among children with cerebral palsy. Aspiration history, oral feeding, and immunization status were found to be strongly associated with the presence of pneumonia. Contrary to expectations, severe CP and malnutrition were not linked with increased pneumonia risk, which may point to confounding protective factors or limited exposure. These findings highlight the need for structured feeding assessments, aspiration prevention protocols, and continued caregiver education to mitigate respiratory complications in children with CP.

Authors Contribution

Conceptualization: BH

Methodology: SP, SA, AF, AMK, AAQ Formal analysis: BH, SP, SA, AF, AMK, AAQ Writing review and editing: BH, AAQ

All authors have read and agreed to the published version of the manuscript

Conflicts of Interest

All the authors declare no conflict of interest.

Source of Funding

The author received no financial support for the research, authorship and/or publication of this article.

REFERENCES

- Tanaka N, Nohara K, Uota C, Fujii N, Obana A, Tanaka K et al. Relationship Between Daily Swallowing Frequency and Pneumonia in Patients With Severe Cerebral Palsy. BioMed Central Pediatrics. 2022 Aug; 22(1): 485. doi: 10.1186/s12887-022-03547-0.
- [2] Kürtül Çakar M, Cinel G. The Respiratory Problems of Patients with Cerebral Palsy Requiring Hospitalization: Reasons and Solutions. Pediatric Pulmonology. 2021 Jun; 56(6): 1626-34. doi: 10.1002/ ppul.25306.
- Liu FH, Huang JY, Chang YC. The Relationship Between Pneumonia and Dental Visits in Patients with Cerebral Palsy: A Nationwide Registry-Based Cohort Study in Taiwan. Journal of Dental Sciences. 2025 Jan; 20(1): 118-25. doi: 10.1016/j.jds.2024.09.019.
- [4] Kuo TJ, Hsu CL, Liao PH, Huang SJ, Hung YM, Yin CH. Nomogram for Pneumonia Prediction among Children and Young People with Cerebral Palsy: A Population-Based Cohort Study. PLOS One. 2020 Jul; 15(7): e0235069. doi: 10.1371/journal.pone.02350
- [5] Stevens JD, Turk MA, Landes SD. Cause of Death Trends Among Adults with and without Cerebral Palsy in The United States, 2013-2017. Annals of Physical and Rehabilitation Medicine. 2022 Mar; 65(2): 101553. doi: 10.1016/j.rehab.2021.101553.
- [6] Khan SA, Talat S, Malik MI. Risk Factors, Types, and Neuroimaging Findings in Children with Cerebral Palsy. Pakistan Journal of Medical Sciences. 2022 Sep; 38(7): 1738. doi: 10.12669/pjms.38.7.6175.
- Igbal N, Zafar F, Igbal M. Factors Influencing the Outcome of Severe Pneumonia among Children Having Age from 2 Months to 5 Years in A Tertiary Healthcare Hospital: Factors Influencing the Outcome of Severe Pneumonia. Pakistan Journal of Health Sciences. 2023 Jan: 60-5. doi: 10.54393/pjhs. v4i01.480.

- [8] Whitney DG, Xu T, Berri M. Post-Fracture Pneumonia Risk and Association with Health and Survival Outcomes for Adults with Cerebral Palsy: A Retrospective Cohort Study. Bone. 2022 Jun; 159: 116390. doi:10.1016/j.bone.2022.116390.
- [9] Whitney DG. Development and Temporal-Validation of Prognostic Models for 5-Year Risk of Pneumonia, Respiratory Failure/Collapse, and Fracture Among Adults with Cerebral Palsy. Advances in Medical Sciences. 2025 Mar; 70(1): 109-16. doi: 10.1016/j. advms.2025.01.007.
- [10] Mpody C, Hayes S, Rusin N, Tobias JD, Nafiu OO. Risk Assessment for Postoperative Pneumonia in Children Living with Neurologic Impairments. Pediatrics. 2021 Sep; 148(3): e2021050130. doi: 10.1542/peds.2021-050130.
- [11] Kopiyka GK, Kravchenko TY, Lotysh NG, Zaretska VV. Features of the Community-Acquired Pneumonia Course in Children with Cerebral Palsy. Fractures of the talus: Current concepts and new developments. Foot and Ankle Surgery. 2018; 4(24): 282–290.
- [12] Aishauova RR, Abdrakhmanova ST, Meshcheryakov VV. Features of Community-acquired Pneumonia in Children with Children's Cerebral Paralysis. Acta Scientific Nutritional Health. 2021; 5(7): 57-63. doi: 10.31080/ASNH.2020.05.0892.
- [13] Peneva P, Pancheva R, Nikolova SP. Unveiling Respiratory Challenges in Cerebral Palsy: A Comprehensive Review. Biomedical Reviews. 2023 Dec; 34: 121-32. doi: 10.14748/bmr.v34.9620.
- [14] Amer AR, Sobeih AA, Hekal HH. Respiratory Complications in Children with Cerebral Palsy. Benha Medical Journal. 2024 Mar; 41(1): 233-45. doi: 10.2160 8/bmfj.2024.263581.2001.
- [15] Strzalkowski AJ, Melvin P, Mauskar S, Stringfellow I, Berry JG. Postoperative Pneumonia Risk in Children with Neurologic and Neuromuscular Disorders. Hospital Pediatrics. 2024 Dec; 14(12): 1001-8. doi: 10.1542/hpeds.2023-007618.
- [16] Spoto G, Accetta AS, Grella M, Di Modica I, Nicotera AG, Di Rosa G. Respiratory Comorbidities and Complications of Cerebral Palsy. Developmental Neurorehabilitation. 2024 Aug; 27(5-6): 194-203. doi: 10.1080/17518423.2024.2374959.
- [17] Jonsson U, Eek MN, Sunnerhagen KS, Himmelmann K. Health Conditions in Adults with Cerebral Palsy: The Association with CP Subtype and Severity of Impairments. Frontiers in Neurology. 2021 Oct; 12: 732939. doi:10.3389/fneur.2021.732939.
- [18] Gordon B, Nyiro JU, Nair H, Sheikh Z, Katama E, Agoti CN et al. External Validation of Pediatric Pneumonia and Bronchiolitis Risk Scores to Predict Mortality in

- Children Hospitalized in Kenya: A Retrospective Cohort Study. The Journal of Infectious Diseases. 2025 Jul: jiaf377. doi: 10.1093/infdis/jiaf377.
- [19] Rafique A and Naz H. A Retrospective Cohort Study of Probable Risk Factors for Cerebral Palsy in Karachi, Pakistan. Rawal Medical Journal. 2023 May; 48(2): 452-7.
- [20] Qureshi D, Bano S, Idrees H, Iram S. Identifying Frequency and Associated Factors with Respiratory Illnesses in Children with Cerebral Palsy. The Professional Medical Journal. 2020 Jun; 27(06): 1187-93. doi: 10.29309/TPMJ/2020.27.06.4010.