lip

PAKISTAN JOURNAL OF HEALTH SCIENCES (LAHORE)

https://thejas.com.pk/index.php/pjhs ISSN (P): 2790-9352, (E): 2790-9344 Volume 5, Issue 11 (November 2024)

Exploring the Effectiveness of Guided Tissue Regeneration Techniques in Periodontal Disease Treatment and Its Long-Term Effects on Patients

Ayesha Imtiaz¹, Rabia Sadiq², Farah Tasleem³, Usman Rashid⁴, Sarmad Saif⁵, Malyla Amir⁵ and Muhammad Hussain"

¹Department of Science of Dental Materials, Baqai Medical University, Karachi, Pakistan

²Department of Orthodontics, Khan Research Laboratories Hospital, Islamabad, Pakistan

³Department of Science of Dental Materials, Isra University, Hyderabad, Pakistan

⁴Department of Periodontology, Sharif College of Dentistry, Sharif Medical and Dental College, Lahore, Pakistan

⁵Department of Periodontology, Sharif Medical and Dental College, Lahore, Pakistan

⁶Department of Oral Surgery and Periodontology, Rehmat Memorial Post Graduate Hospital, Abbottabad, Pakistan

ABSTRACT

⁷Department of Molecular Pathology, University of Health Sciences, Lahore, Pakistan

ARTICLE INFO

Keywords:

Guided Tissue Regeneration, Periodontal Disease, Tissue Regeneration, Long-term Outcomes

How to Cite:

Imtiaz, A., Sadiq, R., Tasleem, F., Rashid, U., Saif, S., Amir, M., & Hussain, M. (2024). Exploring the Effectiveness of Guided Tissue Regeneration Techniques in Periodontal Disease Treatment and Its Long-Term Effects on Patients: Effects of Guided Tissue Regeneration Techniques in Periodontal Disease Treatment.Pakistan Journal of Health Sciences, 5(11), 296-303. https://doi.org/10.54393/ pjhs.v5i112475

*Corresponding Author:

Muhammad Hussain

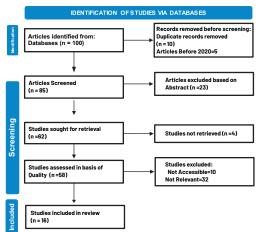
Department of Molecular Pathology, University of Health Sciences, Lahore, Pakistan muhammadhussainmh173@gmail.com

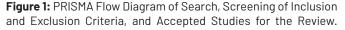
Received Date: 12th October, 2024 Acceptance Date: 25th November, 2024 Published Date: 30th November, 2024

INTRODUCTION

Periodontal disease, commonly known as gum disease, is a persistent inflammatory illness brought on by bacterial organisms affecting the alveolar bone and the periodontal ligament. Gingivitis and periodontitis are some of the common periodontal diseases which affect millions of people irrespective of age [1]. It is a global health problem with differing rates between geographic areas affected by dental hygiene habits, individual economic status, and available dental services [2]. There is evidence that periodontal diseases may have a systemic effect on health and if untreated, it may lead to cardiovascular diseases,

ligaments. An innovative approach to treat such infections is guided tissue regeneration which helps in the regeneration of tissues which are lost by this disease. **Objectives:** To assess the appropriateness of guided tissue regeneration procedures in periodontal management and evaluate the clinical benefits for patients. Methods: An intensive review of literature was made using PubMed, Science Direct and Google Scholar, by considering articles published between 2020-2024. Some of the analysed works investigated the effectiveness of guided tissue regeneration techniques as compared to other traditional methods of periodontal treatment. The parameters that have been evaluated include tissue repair, decrease in periodontal pocketing, gain in clinical attachment, and the aesthetic crown height index. The studies have been sourced from America, Europe and Asia. Results: Results from the studies highlight the efficacy of guided tissue regeneration techniques in the tissue repair process. It significantly highlights the improvements in dental attachment levels, long-term periodontal health and pocket reduction. However, variation in patients and their specified underlying conditions remain. Conclusions: It was concluded that guided tissue regeneration appears to provide an effective line of treatment for periodontal disease with the prediction of long-term therapeutic outcomes. Further studies should be carried out to enhance the properties of guided tissue regeneration materials and application methods to obtain more consistent results.


Periodontal disease is a bacterial infection that affects gums, alveolar bone and periodontal


diabetes mellitus, and adverse pregnancy outcomes [3]. This review focuses on the role of Guided Tissue Regeneration (GTR) and its techniques as an innovative approach to the treatment of periodontal diseases. By elevating the regeneration of lost tissues, GTR has the potential to address the drawbacks of conventional treatments and enhance patient outcomes. The purpose of this review is to evaluate present techniques and approaches of GTR, highlight clinical advantages and limitations by observing patient outcomes, and suggest future applications based on the results obtained. While conventional treatment methods like Scaling and Root Planning (SRP) and surgical surgeries focus on the treatment of infection and inflammation, the GTR method is designed to form new lost periodontal tissues including bone, ligament, and cementum [4]. GTR employs the use of barrier membranes, which avoid the proliferation of epithelial cells in the wound site and provide a chance for the growth of periodontal tissues. Heterogeneous GTR techniques are classified according to the membranes used: cellulose acetate, polyvinyl pyridine, polyethersulphone, and mixed matrix membranes. These include non-resorbable barrier membranes including the expanded poly-tetrafluoro-ethylene (ePTFE) and bioresorbable barrier membranes including collagen polylactic acid. Polymeric scaffolds and bioinspired membranes have also been used as an oxidative advancement to improve tissue regeneration and include antibacterial properties [5]. Furthermore, methods involving the utilization of Platelet-Rich Fibrin (PRF) and Advanced Platelet-Rich Fibrin (APRF) enrich the process of treatment and enable early tissue regeneration due to the release of growth factors into the injured area [6]. Extensive reviews revealed that the use of one or another GTR technique results in favourable outcomes in periodontal regeneration, especially where patients suffer from the moderate to severe form of periodontitis. GTR techniques have demonstrated alkaline phosphatase(ALP) advancements in parameters such as Pocket depth (PD), clinical attachment level (CAL) and bleeding index (BI), as well as, radiographic bone fill. Some studies have shown that patients who undergo GTR seem to have a more predictable tissue healing profile as per the research compared to patients who receive conventional treatment including SRP only [7]. The main strength of GTR techniques over traditional ones is that the latter can treat the initial structural damage which is characteristic of periodontitis. Although SRP and surgical approaches provide successful prevention and treatment of infection and inflammation, they cannot replace the lost bone or ligament. Conversely, it has been ascertained that GTR enhances tissue healing and regeneration process and postoperative periodontal health is maintained for a longer time [8, 9]. Also, the new GTR techniques using nanocomposite membranes that include antimicrobial agents have shown better results because they minimize bacterial adhesion and colonization at the wound site [10]. Finally, the application of nanotechnology in bioactive agents and patient-specific medicine forms the future for periodontal regeneration. Future research studies with more follow-ups are required to prove the efficacy of these protocols in the long run and more importantly in primary care dentistry to patients of different ethnic groups with different degrees of periodontal disease.

This study aims to assess the appropriateness of guided tissue regeneration procedures in periodontal management and evaluate the clinical benefits for patients.

METHODS

In line with the guidelines from PRISMA, this review was conducted from February 2024 to June 2024. To begin with, 108 articles were found with publication years ranging from 2020 to 2024 and all the articles were in English language. These articles were systematically chosen according to the following criteria of inclusion: assessing different GTR methods in periodontal disease treatment and their long-term effects. Key details extracted from each article included: Author: year, geographic location, title, type of study, method of analysis, type of GTR method used, sample size, follow-up time, outcomes, main findings and bibliography. For this search, the following databases were used; Science Direct, Google Scholar, Springer, and PubMed, Google Scholar contributed 90% of the articles. The studies were depicted from the regions within Asia, Europe, and America. The search strategy used the following keywords: Guided tissue regeneration, GTR, periodontal disease, regenerative techniques, clinical outcomes, bone regeneration and tissue regeneration. These terms were chosen to include the broad application of GTR in periodontal regeneration. Articles that failed to meet the set standard, were discarded. The inclusion criteria centred on the practical use of GTR techniques, with investigations published after 2020 and above to incorporate current developments in the methodologies. After searching the article titles of the 108 obtained articles, 11 articles were duplicated and excluded from the list making the total number of articles for review 99. Out of 108 articles, 65 were removed because of irrelevance or failure to qualify for the study. In total, studies were identified for further analysis, as their articles were relevant to GTR techniques and clinical efficacy, as well as the differences between regional outcomes in periodontal therapy. The flowchart is an illustration of steps taken to exclude studies not fitting the criteria set in advance, which allowed the focus on GTR procedures and the application of these methods in periodontal diseases treatment (Figure 1).

Studies were Filtered out as Being Most Relevant.

RESULTS

All of the articles reviewed were related to periodontal disease and GTR procedures. The sample population especially focused on the type of GTR method applied in each scenario and their efficacy in tissue healing against periodontitis. Out of 16 reviewed studies, 10 were experiments, 3 were randomized controlled trials and 3 were clinical, comparative and prospective studies respectively. These studies were retrieved from international databases; however, the major contributions

were identified in Asia (Total 35%), Europe (Total 30%), and America (Total 25%). Only articles published in the last five years (2020–2024) were considered for analysis. The articles were mostly obtained from Google Scholar (90%) and the rest 10% were from Science Direct, Frontiers and other platforms like Research Gate and PubMed. A comparison of the efficiency of various forms of GTR in different parts of the globe and different clinical contexts was analyzed. Details of these studies, which are presented[13–28](Table1).

Table 1: Schematic Review of Key Studies on Guided Tissue Regeneration (GTR) in Periodontal Disease Treatment

Reference	Study Design, Sample Size (N) (Follow-Up Duration)	Application of GTR	Outcomes Measured with Their Results (Efficacy)	Key Findings (Brief)	Conclusions	Limitations
[11]	Experimental study with a focus on the development of scaffold (n=18 with 6 repetitions of 3 independent groups)	Tissue-specific melt electro-written polymeric scaffolds.	The scaffolds reduced biofilm production, lactic acid formation, and bacterial viability.	The melt electro-written scaffolds are promising for dental and bone tissue regeneration.	This technique, incorporating 5% DMAHDM and 20% NACP, demonstrated high antibacterial efficacy and mechanical stability.	Further clinical studies are needed to confirm the long-term performance
[12]	Experimental study using enamel samples and biofilm models (48, divided into 4 equal groups)	Sandwich-like nanocomposite electro-spun silk fibroin membrane	The group with NACP+DMAHDM showed the highest demineralization efficacy (54.52%) and the least lesion depth.	The combination of NACP+DMAHDM demonstrated superior enamel demineralization and antibacterial effects increasing recovery.	It shows promise as GTR application promotes both tissue regeneration and biofilm suppression.	long-term clinical studies are necessary to verify the effects in vivo.
[13]	Experimental study on antibacterial coatings for orthopedic implants. (3 samples per material type)	Titanium dioxide (TiO2)sol-gel coatings	The coatings demonstrated excellent cyto-compatibility, with no cytotoxic effects on human osteosarcoma cells.	Enhanced osteogenic potential was observed in coatings with both Ag and Ga, as indicated by increased ALP activity.	These coatings show promising solutions for preventing infections on orthopedic implants and promoting bone tissue regeneration.	The study is limited to in vitro testing
[14]	Prospective pilot clinical study (9 patients, 12-month follow-up)	Carbonate apatite (CO3Ap) granules and poly(lactic acid/ capro-lactone)(PLCL) membrane	Average PPD reduction at 6 and 12 months: 4.5 ± 1.6 mm and 4.9 ± 1.4 mm, respectively Average CAL gain at 6 and 12 months: 4.4 ± 1.7 mm and 4.6 ± 1.2 mm, respectively	Radiographic improvements in linear bone height and vertical sub-classification of furcation involvement	Demonstrated effective and safe treatment for intra-bony defects and mandibular Class II furcation involvement	Small sample size, single-center study, lack of a control group.
[15]	Randomized controlled trial (24 patients, 12-month follow-up)	Poly-caprolactone (PCL) membrane vs. collagen membrane for guided bone regeneration (GBR) with simultaneous implant placement	Both groups had high implant survival (100%) and similar soft tissue outcome	Both membranes demonstrated similar outcomes in bone regeneration and soft tissue dimensional changes after 1 year.	The newly developed bilayer PCL membrane showed comparable efficacy to the collagen membrane in GBR.	Small sample size, lack of long-term follow-up, and no direct measurement of membrane degradation

DOI: https://doi.org/10.54393/pjhs.v5i11.2475

					1	,
[16]	Comparative study (26 patients,6-month follow-up)	GTR with resorb-able membrane vs. Advanced Platelet-Rich Fibrin (APRF)	The APRF group showed better improvement in Bleeding on Probing (BOP), PD, CAL, and IBD compared to the GTR group at 6 months.	Both treatment groups showed significant improvement in periodontal parameters.	A-PRF was more effective in improving clinical and radiographic parameters than GTR in treating combined endo-periodontal lesions.	Small sample size,short follow -up duration, no long-term follow-up to assess sustained efficacy
[17]	Experimental study (in vitro and in vivo), (16 Sprague Dawley rats with follow-up of 4 weeks)	Bioinspired Janus polyurethane membrane designed for guided tissue regeneration (GTR)	The membrane showed excellent mineralization properties and high antioxidant efficiency.	In vivo studies demonstrated effective periodontal tissue regeneration, with notable bone recovery in the rat model.	The bioinspired Janus polyurethane membrane has promising potential for guided tissue regeneration in periodontal applications	Further long-term studies and clinical trials are needed to validate the results in humans
[18]	Split-mouth randomized controlled clinical trial (13 patients with 6-month follow-up)	Platelet-rich fibrin (PRF) used as an adjunct to scaling and root planning (SRP)	Significant improvements in PPD reduction and CAL gain in the SRP + PRF group compared to SRP alone.	The test group demonstrated superior healing and less gingival recession	The adjunctive use of PRF with SRP enhances periodontal healing and reduces tissue morbidity	Small sample size, short follow-up period
[19]	Experimental in-vitro study, focus on biomaterials and in-vitro testing	Chitosan/hyaluronic acid/glycerol-based bio-resorbable membranes embedded with lidocaine- and chloramphenicol-loaded poly-capro-lactone nanoparticles.	Developed membranes showed effective release of lidocaine and chloramphenicol, providing local anaesthetic and antimicrobial effects.	The membranes demonstrated biocompatibility, with no significant toxicity in most cases,and controlled, sustained drug release over time.	The drug-eluting bio-membranes have the potential for guided tissue regeneration (GTR) by addressing both postoperative pain and microbial infections.	The study was limited to in vitro tests
[20]	Experimental laboratory study (scaffolds tested in vitro with MC3T3-E1 pre-osteoblasts.)	3D-printed PCL scaffolds loaded with tetracycline hydrochloride (TCH).	Scaffolds promoted significant cell attachment and proliferation.	The PCL-TCH scaffolds demonstrated high drug entrapment efficiency (95% ± 3.6%) and effective controlled drug release.	PCL-TCH scaffolds represented promising treatment for local antibacterial action and bone tissue regeneration.	The study did not include long-term in vivo evaluations or clinical trials, limiting the applicability
[21]	Randomized controlled split-mouth clinical study (20 patients with a follow-up of 9 months)	Titanium-prepared platelet-rich fibrin (T-PRF) combined with open flap debridement (OFD)	Significant improvements in clinical parameters p<0.05) in the T-PRF group comparatively to the OFD bone -filling rate in theT-PRF group (p<0.001)	Significant differences in growth factor levels between groups at various follow-up points (p<0.05)	The combination of T-PRF with OFD significantly enhances periodontal regeneration compared to OFD alone	The study's limitations include a relatively small sample size and the absence of long-term follow-up beyond nine months
[22]	In vitro experimental design, evaluating the efficacy of scaffolds used	Biodegradable scaffoldsmimicking the extracellular matrix of periodontal tissues.	Co-cultures exhibited enhanced metabolic activity and pronounced expression of differentiation markers	The novel in situ-cross-linked electrospun scaffolds demonstrated potential as effective platforms for periodontal tissue engineering	These findings suggest a promising avenue for future clinical applications in regenerative dentistry	Variability in cell behaviour based on scaffold composition not fully explored
[23]	In-vitro and in-vivo experimental designs, (20 male Sprague Dawley rats, with a follow-up duration of 8 weeks)	Guided Bone Regeneration (GBR) techniques using bio-glass and collagen membranes (Bio-Gide)	The combination of bio-glass with rhBMP-9 significantly enhanced cell viability,adhesion, and osteogenic differentiation compared to controls.	In vivo, results indicated that bio-glass /rhBMP9 samples showed superior bone regeneration compared to bio-glass alone	Bio-glass and collagen membranes can serve as effective carriers for rhBMP-9 in GBR applications	The translation of findings from animal models to clinical applications requires further investigation.

Copyright © 2024. PJHS, Published by Crosslinks International Publishers This work is licensed under a Creative Commons Attribution 4.0 International License.

DOI: https://doi.org/10.54393/pjhs.v5i11.2475

[24]	Randomized controlled clinical trial (20 patients with follow-up of 6 months)	Platelet-rich fibrin (PRF)+ bio-absorbable guided tissue regeneration (GTR)membrane.	Significant differences were observed in PPD, CAL gain, WKG, and GT between the two groups.	The combination of PRF with GTR did not provide additional benefits over GTR alone in terms of root coverage	PRF combined with GTR membrane does not offer substantial improvements over GTR alone.	The trial was limited by a relatively small participant group
[25]	Experimental In-vitro study evaluating different conc. of Ag-NPs for periodontal regeneration.	Collagen membranes with different conc. of silver nanoparticles for GTR	The 2% Ag-NPs membrane showed excellent cytocompatibility.	The 2% Ag-NPs collagen membrane demonstrated both effective antibacterial properties and high cytocompatibility	A collagen membrane containing 2% Ag-NPs showed potential for GTR in periodontal regeneration.	The 3% Ag-NPs membrane was cytotoxic, reducing its suitability for regenerative applications.
[26]	In-vivo study on rabbits with follow-up of 5 weeks	Ethylene oxide sterilized chitosan -polyvinyl alcohol (CS-PVA) bio -membranes	The test group showed significant tissue growth and bone regeneration by 5 weeks, with the GTR membranes being resorbed	The CS-PVA bio membranes allowed complete healing and membrane resorption.	The ethylene oxide sterilized CS-PVA bio-membranes demonstrated potential for effective guided tissue regeneration in chronic periodontitis.	The sample size was not explicitly mentioned.

MC3T3-E1=Mouse Calvarial Preosteoblast Cell Line, DMAHDM=5-(N, N-Dimethyl) Hexadecyl-2-Pyridylamine, NACP=Nano-Hydroxyapatite with Calcium Phosphate

DISCUSSION

Periodontal diseases can cause severe complications which include tissue damage, deep periodontal pockets due to tissue loss, gingival recession, and bone resorption if left untreated. These poor outcomes can impair oral function, aesthetics, and overall quality of life. It successfully provided an up-to-date overview of the available GTR techniques concerning the clinical results, the global distribution of techniques, and the constraints, followed by an outlook on the most effective periodontal treatment concepts. Guided Tissue Regeneration (GTR) has been proven to be significantly effective against periodontal tissue loss by employing tissue regeneration which showed improved clinical outcomes in the form of reduction in pocket depth and enhancement in clinical attachment levels [27]. The obtained data demonstrated its effectiveness in enhancing tissue healing and its longlasting changes in periodontal health [28]. In recent years GTR has established itself as a complementary tool to conventional therapies such as scaling and root panel (SRP) or surgery, demonstrating often safer and better outcomes [29]. Several approaches of GTR have demonstrated clinical success such as bioresorbable membranes, nonbioresorbable membranes, and the use of advanced biomaterial polymeric scaffolds or bioinspired membranes. Methods using platelet-rich fibrin (PRF) and advanced platelet-rich fibrin(A-PRF) have also proved to be very effective in promoting healing since they act as templates for tissue reconstruction and act as carriers of

growth factors to the affected region of the mouth [30]. Moreover, the material in the form of bioactive membranes containing nanoparticles or antibacterial substances has been considered for combating microbial issues involved in periodontal diseases since it provides an extra barrier against recurring infections [31]. From the analysis of the examples of applying the different GTR techniques, each technique has its distinct advantage. For example, melt electro-written scaffolds have been shown to have strong antibacterial properties and good mechanical stability in the long term [32]. Likewise, bioinspired Janus polyurethane membranes for tissue engineering and nanocomposite electro-spun silk fibroin membranes for microbial biofilm-resistant surfaces revealed encouraging outcomes [33]. A-PRF, when used in conjunction with GTR, provided better short-term stability in terms of PD, CAL, and improved healing. Comparatively, A-PRF seems to provide the best improvement in clinical parameters in the short-term restoration and advanced scaffolds and bioinspired membranes provide the long-term utility, predominantly, antibacterial properties and stability of the tissue [34]. Not to forget, advanced bioinspired membranes and polymeric scaffolds offer long-term benefits which include antibacterial efficacy and tissue stability, that ultimately reduce the risk of recurring infection. The usage of GTR techniques has some restrictions because its accessibility depends upon the progress of dental science and techniques in the

respective region and the economic state. Polymeric scaffolds and bioinspired membranes are utilized in the developed countries of North America and Europe especially the USA and Germany due to the availability of modern dental technologies and adequate research grants [35]. However, other regions such as Asia and South American countries still heavily depend on classic GTR techniques, but in recent years there has been an increasing trend of applying PRF and biomaterials, especially in China and India [36]. In some developing regions, because of the problems in clinical resources and restricted access to high-end regenerative materials, advanced GTR technologies have not been widely applied. This study provided a comprehensive review of GTR approaches and patient outcomes; however, this study has certain limitations that need to be addressed. The first limitation is the variation in data across studies e.g. sample size, conditions, design of study, and follow-up period that hinders the consistency of the study. The second limitation is that since this study observed recent approaches, most of the GTR techniques are not well-established practices yet and lie in their early clinical trial period hence long-term effects are not yet known for them. Likewise, GTR techniques are not entirely without their drawbacks. Research focusing on patients receiving periodontal surgery reported variations in treatment results based on parameters like the seriousness of the disorder, the presence of other diseases, or the patient's compliance with postoperative directions and recommendations [37]. In addition, most of the currently represented innovative GTR methods, such as bioinspired membranes and polymeric scaffolds, are still experimental or at the stage of large-animal pilot clinical trials, thus, the safety and efficacy of these methods need to be established in further, more extensive investigations [38]. Price and access to specific GTR materials are also an issue, especially in the developing world, where dental health care is still very scarce [39]. This study leads the further development of more cost-effective, accessible and biocompatible GTR material for the widespread application of these techniques in the future. New advances in biomaterial science especially the use of nanotechnology and growth factors in GTR membranes show a lot of potential for enhancing the clinical success of GTR and minimizing the chance of reinfection [40]. As for future studies, it is necessary to concentrate on improving the scaffold's architecture for increased and more contiguous tissue formation rate, and improving the antibacterial efficacy of the membranes [41]. In the years to come owing to the development in 3D printing and bioengineering, GTR solutions can be designed according to patient-specific conditions, which can address oral disorders more effectively.

CONCLUSIONS

It was concluded that guided tissue regeneration has been developed as one of the most effective modalities for performing periodontal therapy; this is an assertion given the fact that the approach is regenerative compared to other conventional techniques. The review highlights that GTR materials such as A-PRF and bioinspired membranes offer better clinical results in terms of tissue regeneration and long-term periodontal health respectively. Among all techniques studied, A-PRF is better for short-term healing and bioinspired membranes and advanced scaffolds for long-term anti-bacterial protection and tissue stability. Clinicians are encouraged to apply these techniques, especially in periodontitis where standard treatment procedures may require additional support. These advanced techniques not only improve the treatment results of patients but also provide practical advantages, such as less healing time and reduced morbidity. It can be countered by focusing on the cost-effective accessibility of GTR techniques in regions of low availability. As biomaterial science advances today, the consciousness of increasing application of GTR surfaces increases. Because of that GTR's capability to become one of the most routine protocols in the prevention of periodontal infections and enhancement of patient's life globally remains vivid.

Authors Contribution

Conceptualization: AI, RS, FT Methodology: AI, RS, FT, UR, SS, MA, MH Formal analysis: AI, RS, FT Writing review and editing: AI, MH

All authors have read and agreed to the published version of the manuscript

Conflicts of Interest

All the authors declare no conflict of interest.

Source of Funding

The author received no financial support for the research, authorship and/or publication of this article.

REFERENCES

- [1] Sedghi LM, Bacino M, Kapila YL. Periodontal Disease: The Good, the Bad, and the Unknown. Frontiers in Cellular and Infection Microbiology. 2021 Dec; 11: 76694 4. doi: 10.3389/fcimb.2021.766944.
- [2] Trindade D, Carvalho R, Machado V, Chambrone L, Mendes JJ, Botelho J. Prevalence of Periodontitis in Dentate People Between 2011 And 2020: A Systematic Review and Meta-Analysis of Epidemiological Studies. Journal of Clinical Periodontology. 2023 May; 50(5): 604-26. doi: 10.1111/jcpe.13769.
- [3] Ashfaq R, Kovács A, Berkó S, Budai-Szűcs M. Developments in Alloplastic Bone Grafts and Barrier

Membrane Biomaterials for Periodontal Guided Tissue and Bone Regeneration Therapy. International Journal of Molecular Sciences.2024 Jul; 25(14): 7746. doi: 10.3 390/ijms25147746.

- [4] Aprile P, Letourneur D, Simon-Yarza T. Membranes for Guided Bone Regeneration: A Road from Bench to Bedside. Advanced Healthcare Materials. 2020 Oct; 9(19): 2000707. doi: 10.1002/adhm.202000707.
- [5] Gollapudi M, Bajaj P, Oza RR. Injectable Platelet-Rich Fibrin-A Revolution in Periodontal Regeneration. Cureus. 2022 Aug; 14(8). doi: 10.7759/cureus.28647.
- [6] Lee JH and Jeong SN. Long-Term Results of Regenerative Treatment of Intra-Bony Defects: A Cohort Study with 5-Year Follow-Up. Bio-Med Central Oral Health. 2024 Jan; 24(1): 34. doi: 10.1186/s12903-023-03820-3.
- [7] Jongrungsomran S, Pissuwan D, Yavirach A, Rungsiyakull C, Rungsiyakull P. The Integration of Gold Nanoparticles into Dental Biomaterials as a Novel Approach for Clinical Advancement: A Narrative Review. Journal of Functional Biomaterials. 2024 Sep; 15(10): 291. doi: 10.3390/jfb15100291.
- [8] Pan P, Wang J, Wang X, Yu X, Chen T, Jiang C et al. Barrier Membrane with Janus Function and Structure for Guided Bone Regeneration. American Chemical Society Applied Materials and Interfaces.2024 Sep; 16(36): 47178-91. doi: 10.1021/acsami.4c08737.
- [9] Wang X, Chen J, Tian W. Strategies of Cell and Cell-Free Therapies for Periodontal Regeneration: The State of the Art. Stem Cell Research and Therapy. 2022 Dec; 13(1): 536. doi: 10.1186/s13287-022-03225-z.
- [10] Guo S, He L, Yang R, Chen B, Xie X, Jiang B et al. Enhanced Effects of Electrospun Collagen-Chitosan Nanofiber Membranes On Guided Bone Regeneration. Journal of Biomaterials Science, Polymer Edition. 2020 Jan; 31(2): 155-68. doi: 10.1080/09205063.2019.16 80927.
- [11] Daghrery A, Ferreira JA, Xu J, Golafshan N, Kaigler D, Bhaduri SB et al. Tissue-specific Melt Electro-Written Polymeric Scaffolds for Coordinated Regeneration of Soft And Hard Periodontal Tissues. Bioactive Materials.2023 Jan; 19: 268-81. doi: 10.1016/j.bioactma t.2022.04.013.
- [12] Xiang J, Li Y, Ren M, He P, Liu F, Jing Z et al. Sandwich-Like Nanocomposite Electrospun Silk Fibroin Membrane to Promote Osteogenesis and Antibacterial Activities. Applied Materials Today.2022 Mar; 26: 1012 73. doi: 10.1016/j.apmt.2021.101273.
- [13] Collatusso DD, Bespalez R, Dantas LR, Suss PH, Rocha JL, Casagrande TA et al. Biological Membrane with Antimicrobial Activity with Vancomycin and Silver N a n o p a r t i c l e s for G u i d e d B o n e

Regeneration-Development and Clinical Study. Journal of Drug Delivery Science and Technology. 2024 Jun; 96: 105729. doi: 10.1016/j.jddst.2024.10572 9.

- [14] Okada M, Fukuba S, Yamaki D, Iwata T. Clinical Outcomes of Guided Tissue Regeneration with Carbonate Apatite Granules and Poly (Lactic Acid/Caprolactone) Membrane for the Treatment of Intrabony Defects and Mandibular Class II Furcation Involvements: A 12-Month Prospective Pilot Clinical Study. Regenerative Therapy.2024 Jun; 26: 767-74. doi: 10.1016/j.reth.2024.08.017.
- [15] Kusirisin T, Suwanprateeb J, Buranawat B. Poly-Caprolactone Versus Collagen Membrane and 1-Year Clinical Outcomes: A Randomized Controlled Trial. Clinical Implant Dentistry and Related Research. 2023 Apr; 25(2): 330-42. doi: 10.1111/cid.13166.
- [16] Stefanescu A, Şufaru IG, Forna NC, Lupu FC, Agop-Forna D, Earar K. Comparative Study of the Effects of A-PRF Versus GTR in the Treatment of Combined Endo Periodontal Lesions. Romanian Journal of Oral Rehabilitation. 2024 Jul; 16(3). doi: 10.6261/RJOR.2024 .3.16.62.
- [17] He Y, Wang X, He Y, Zhao X, Lin J, Feng Y et al. A Bioinspired Janus Polyurethane Membrane for Potential Periodontal Tissue Regeneration. Journal of Materials Chemistry B.2022; 10(14): 2602-16. doi:10.10 39/D1TB02068D.
- [18] Parwani SR, Thakare KS, Kawadkar KP, Soni NJ, Parwani R, Dadlani H et al. Platelet-Rich Fibrin in Non-Surgical Periodontal Therapy: A Split-Mouth Randomized Controlled Clinical Trial. Dentistry Journal. 2024 May; 12(5): 135. doi: 10.3390/dj12050135.
- [19] Vasconcelos MO, Silva LA, Sousa-Junior AA, dos Santos TR, da Silva CA, Valadares MC et al. Lidocaineand Chloramphenicol-Loaded Nanoparticles Embedded in A Chitosan/Hyaluronic Acid/Glycerol Matrix: Drug-Eluting Bio-membranes with Potential for Guided Tissue Regeneration. Frontiers in Nanotechnology.2022 Nov; 4: 1049599. doi: 10.3389/fn ano.2022.1049599.
- [20] Theodoridis K, Arampatzis AS, Liasi G, Tsalikis L, Barmpalexis P, Christofilos D et al. 3D-Printed Antibacterial Scaffolds for the Regeneration of Alveolar Bone in Severe Periodontitis. International Journal of Molecular Sciences.2023 Nov; 24(23): 1675 4. doi: 10.3390/ijms242316754.
- [21] Ozkal Eminoglu D, Arabaci T, Oztas Sahiner GA. The Effect of Titanium-Platelet Rich Fibrin On Periodontal Intra-Bony Defects: A Randomized Controlled Split-Mouth Clinical Study. Plos One.2024 Jun; 19(6): e03049 70. doi: 10.1371/journal.pone.0304970.

DOI: https://doi.org/10.54393/pjhs.v5i11.2475

- [22] Dieterle MP, Steinberg T, Tomakidi P, Nohava J, Vach K, Schulz SD *et al.* Novel in Situ-Cross-Linked Electrospun Gelatin/Hydroxyapatite Nonwoven Scaffolds Prove Suitable for Periodontal Tissue Engineering.Pharmaceutics.2022 Jun; 14(6): 1286. doi: 10.3390/pharmaceutics14061286.
- [23] Zhou W, Shi P, Dong J, Li S, Lv P, Liu C. Scaffolds of Bioactive Glass (Bioglass[®]) Combined with Recombinant Human Bone Morphogenetic Protein-9 (Rhbmp-9) For Tooth Extraction Site Preservation. Heliyon. 2022 Jan; 8(1). doi: 10.1016/j.heliyon.2022.e0 8796.
- [24] Sethiya KR, Dhadse P, Bajaj P, Durge K, Subhadarsanee C, Hassan S. Platelet-Rich Fibrin in Combination with Bio-absorbable Guided Tissue Regeneration (GTR) Membrane and GTR Membrane Alone Using Double Lateral Sliding Bridge Flap for Treatment of Multiple Gingival Recession Defects in Humans: A Randomized Controlled Clinical Trail. Journal of Indian Society of Periodontology.2022 May; 26(3): 245-53. doi: 10.4103/ji sp.jisp_322_21.
- [25] Takallu S, Kakian F, Bazargani A, Khorshidi H, Mirzaei E. Development of Antibacterial Collagen Membranes with Optimal Silver Nanoparticle Content for Periodontal Regeneration. Scientific Reports.2024Ma r; 14(1): 7262. doi: 10.1038/s41598-024-57951-w.
- [26] David SR, Biswas BK, Rajabalaya R. Formulation Development and in Vivo Assessment of Ethylene Oxide Sterilized Chitosan Bio-membranes for Guided Tissue Regeneration in Rabbit Model of Chronic Periodontitis.2024 May. doi: 10.21203/rs.3.rs-4368122 /v1.
- [27] Zhang F and Liu G. Comparison of the Clinical Efficacy of Bone Grafting and Bone Grafting Combined with Guided Tissue Regeneration in Periodontal Regenerative Therapy: A Meta-Analysis. Acta Odontologica Scandinavica. 2024 Apr; 83: 40255. doi:1 0.2340/aos.v83.40255.
- [28] Temir Z, Aydoğdu A, Akman AC. Successful Management of Intra-Bony Periodontal Defect with Regenerative Treatment. International Dental Journal. 2024Oct; 74: S400-1. doi: 10.1016/j.identj.20 24.07.1230.
- [29] Bee SL and Hamid ZA. Asymmetric Resorbable-Based Dental Barrier Membrane for Periodontal Guided Tissue Regeneration and Guided Bone Regeneration: A Review. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2022 Sep; 110(9): 2157-82. doi: 10.1002/jbm.b.35060.
- [30] Milutinovic J, Popovska M, Rusevska B, Nacevski M, Anastasovski S, Ivanovska-Stojanoska M. Evaluation of PRF Efficiency in the Treatment of Infra-Bony Defects. Prilozi. 2020 Jun; 41(1): 79-86. doi: 10.2478/p

rilozi-2020-0025.

- [31] Funda G, Taschieri S, Bruno GA, Grecchi E, Paolo S, Girolamo D et al. Nanotechnology Scaffolds for Alveolar Bone Regeneration.Materials.2020 Jan; 13(1):201. doi: 10.3390/ma13010201.
- [32] Usman M, Tang YR, Du Y, Yuan Q, Wen XR, Tang JW et al.Overview of Nanoparticles for the Rapid Diagnosis and Effective Treatment of Bacterial Pathogens in Clinical Settings. Physica Scripta.2024 May; 99(6): 062009. doi: 10.1088/1402-4896/ad4b66.
- [33] Prajatelistia E, Sanandiya ND, Nurrochman A, Marseli F, Choy S, Hwang DS. Biomimetic Janus Chitin Nanofiber Membrane for Potential Guided Bone Regeneration Application. Carbohydrate Polymers. 2021 Jan; 251: 117032. doi: 10.1016/j.carbpol.2020.1170 32.
- [34] Onicas MI, Narita LE, Mester A, Onisor F, Mancini L. Platelet-Rich Fibrin: A Viable Therapy for Endodontic-Periodontal Lesions? A Preliminary Assessment. Applied Sciences. 2021 Jul; 11(15): 7081. doi: 10.3390/a pp11157081
- [35] Li G and Sun S. Silk Fibroin-Based Biomaterials for Tissue Engineering Applications. Molecules. 2022 Apr; 27(9): 2757. doi: 10.3390/molecules27092757.
- [36] Fraser D, Caton J, Benoit DS. Periodontal Wound Healing and Regeneration: Insights for Engineering New Therapeutic Approaches. Frontiers in Dental Medicine. 2022 Mar; 3: 815810. doi: 10.3389/fdmed.20 22.815810.
- [37] Murali VP, Guerra FD, Ghadri N, Christian JM, Stein SH, Jennings JA et al. Simvastatin Loaded Chitosan Guided Bone Regeneration Membranes Stimulate Bone Healing. Journal of Periodontal Research.2021 Oct; 56(5): 877-84. doi: 10.1111/jre.12883.
- [38] Sanz-Martín I, Cha JK, Sanz-Sánchez I, Figuero E, Herrera D, Sanz M. Changes in Peri-Implant Soft Tissue Levels Following Surgical Treatment of Peri-Implantitis: A Systematic Review and Meta-Analysis. Clinical Oral Implants Research. 2021 Oct; 32: 230-44. doi: 10.1111/clr.13840.
- [39] Swanson WB, Yao Y, Mishina Y. Novel Approaches for Periodontal Tissue Engineering.Genesis.2022 Sep; 60(8-9): e23499.doi: 10.1002/dvg.23499.
- [40] Ward E. A Review of Tissue Engineering for Periodontal Tissue Regeneration. Journal of Veterinary Dentistry. 2022 Mar; 39(1): 49-62. doi:10.117 7/08987564211065137.
- [41] Łasica A, Golec P, Laskus A, Zalewska M, Gędaj M, Popowska M. Periodontitis: Etiology, Conventional Treatments, and Emerging Bacteriophage and Predatory Bacteria Therapies. Frontiers in Microbiology.2024 Sep; 15: 1469414. doi: 10.3389/fmic b.2024.1469414.