Prevalence of Factor V Leiden Mutation in Healthy Females of Sindh, Pakistan and Comparison of Three Detection Methods in Resource-Limited Settings

Feriha Fatima Khidri1, Hina Riaz2, Yar Muhammad Waryah2,4, Roohi Nigar3 and Ali Muhammad Waryah5

1Department of Biochemistry, Bilawal Medical College, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
2Department of Molecular Biology and Genetics, Medical Research Centre, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
3Department of Physiology, Dow University of Health Sciences, Karachi, Pakistan
4Sindh Institute of Ophthalmology and Visual Sciences, Hyderabad, Pakistan
5Department of Gynecology and Obstetrics, Bilawal Medical College, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan

ARTICLE INFO

Key Words: ARMS, Females, FVL, PCR, RFLP, Sequencing

*Corresponding Author: Feriha Fatima Khidri
Department of Biochemistry, Bilawal Medical College, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
Department of Molecular Biology and Genetics, Medical Research Centre, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
feriha.fatima@lumhs.edu.pk

Received Date: 24th August, 2023
Acceptance Date: 13th September, 2023
Published Date: 30th September, 2023

ABSTRACT

Factor V Leiden (FVL) mutation is related to venous thromboembolism and pregnancy complications. It is highly prevalent among Caucasians; however, few studies have been conducted on the Asian population. Objective: To find the prevalence, genotype, and allelic frequency of FVL mutation in females of Sindh, Pakistan, and to develop a valid and economical method for the detection of FVL mutation in resource-limited settings. Methods: Hundred (n=100), unrelated healthy females of Sindh, Pakistan, were recruited. FVL was detected using three methods, i.e., tetra primer amplification refractory mutation system (ARMS)-polymerase chain reaction (PCR), PCR-restriction fragment length polymorphism (PCR-RFLP), and PCR-sequencing. Prevalence, genotype, and allele frequencies were calculated. We compared the three mutation detection methods to find a suitable protocol for FVL detection in developing countries. Results: The prevalence of FVL mutation was 3% in healthy females of Sindh, Pakistan. No homozygous FVL mutation was found. The results from tetra primer ARMS-PCR, PCR-RFLP, and PCR-sequencing were 100% concordant. Tetra primer ARMS-PCR was a valid, reliable, faster, economical genotyping and screening method. Conclusions: In conclusion, FVL mutation was found in our population, and further studies should be conducted to find its role in thromboembolic and obstetrical complications. In addition, we have suggested tetra primer ARMS-PCR as an appropriate method for FVL detection in resource-limited settings.

INTRODUCTION

Inherited or acquired thrombophilia increases the risk of thromboembolism. The factor V Leiden (FVL) mutation, the factor II gene G20210A mutation, methylenetetrahydrofolate reductase (MTHFR) gene C677T mutation, and insufficient antithrombin, protein C and protein S are common inherited causes [1, 2]. Acquired thrombophilias are frequent in patients undergoing surgery, injury, longstanding immobilization, older age, cancers, and pregnant women [3]. Coagulation factor V (FV) protein of the coagulation system circulates in an inactive form until activation of the coagulation cascade by blood vessel injury. It has procoagulant and anticoagulant
characteristics. Its deficiency can lead to mild bleeding or even life-threatening complications. The FV gene mutation may alter its function in the coagulation cascade [4]. The FV gene maps to 1q23-24 comprising 25 exons and 24 introns [5]. The FVL mutation is a missense single nucleotide polymorphism (SNP) in exon 10, causing substitution of a nucleotide at 1691 (adenine for guanine) [6]. FVL mutation has shown an association with venous thromboembolism and pregnancy complications such as preeclampsia, stillbirth, recurrent miscarriage, and placenta abruption. Its association with obstetric complications increases its significance in females [7, 8]. Various protocols based on hybridization, enzymatic procedures, post-amplification methods, and sequencing have been used to detect FVL mutation [9]. However, choosing a suitable method for genotyping SNPs in developing countries with limited resources and financial constraints is essential.

METHODS

A cross-sectional study was conducted at Molecular and Genetics Laboratory, Medical Research Centre (MRC), Liaquat University of Medical & Health Sciences (LUMHS) Jamshoro after taking Ethical approval between the years 2014 and 2015. For this study, 100 unrelated adult healthy females were recruited from general population of Sindh by using non-probability convenience sampling method. The sample size was calculated by taking 5% prevalence of FVL mutation from previous studies [10], using OpenEpi software (https://www.openepi.com/SampleSize). The minimum sample size obtained was n = 73 at 95% confidence level, however to increase study power it was increased to n = 100. The inclusion criteria were female participants, born and residing in the Sindh province of Pakistan, aged between 18 and 45 years, without a known personal and family history of thromboembolic and hematological disorders. Participants with a history of chronic medical diseases such as hypertension, chronic renal diseases, diabetes mellitus, and thrombotic obstetric complications and disorders were excluded. Five ml of venous blood was withdrawn from participants after obtaining written informed consent by the routine method under aseptic measures. Blood was transferred into a falcon tube containing 400 µl of anticoagulant ethylenediaminetetraacetic acid 0.5M (EDTA). Samples were stored at -80°C till analyzed. DNA extraction was performed by inorganic method. Optical density (OD) was measured by DU-800 UV-visible spectrophotometer for quality assessment and quantification. DNA products were separated on 0.8% agarose gel (Figure 1A).

FVL mutation detection by PCR-RFLP involved MnlI as a restriction enzyme. According to the previously published study, forward and reverse primers and amplification conditions were as follow: PCR reaction mixture of 25µl was prepared according to the following protocol: MgCl₂ buffer (2.5mM) 2.5µl, dNTPs (1.25mM) 2.5µl, Taq polymerase 0.6µl, forward primer (8µM) 0.5µl, reverse primer (8µM) 0.5µl, DNA 4µl, and distilled deionized water 14.4µl [11]. After amplification and separation of PCR products on a 1.2% agarose gel (Figure 1B), PCR products were digested by restriction enzyme MnlI (Thermo scientific). Following constituents prepared a reaction mixture of 31 µl: PCR reaction mixture 10 µl, nuclease-free water 18 µl, 10X buffer G 2 µl, and MnlI 1 µl. PCR tubes were incubated at 37°C for 16 hours in 2720 thermocycler. MnlI digested PCR products separated upon 2% agarose gel (Figure 2). The PCR procedure produces amplification of a 287 bp fragment. Restriction with MnlI has bands of different sizes according to genotype as G/G yielded three bands of 37 bp, 93 bp, and 157 bp, A/A 2 bands of 130 bp and 157 bp and G/A 4 bands of 37 bp, 93 bp, 130 bp, and 157 bp sizes.

Detection of factor V Leiden by tetra primer ARMS-PCR was carried out in a single reaction and requires four primers, i.e., two inner and two outer. A previous study describes the design and validation of the tetra primer ARMS-PCR assay for FVL mutation [12]. Amplification of the 385 bp fragment yielded segments of the following sizes according to the genotype (Figure 3): G/G produced two bands of 385 bp and 254 bp, A/A had two bands of 385 bp and 184 bp, and G/A produced three bands of 385 bp, 254 bp, and 184 bp.
Figure 3: Agarose gel electrophoresis for the separation of PCR products via tetraprim ARMS-PCR Sequencing was performed by the Sanger method using ABI 3130 Genetic Analyzer (Figure 4). Sequences from participants were compared with wild-type sequences by using the BLAST web tool provided by the National Center for Biotechnology Information USA.

Figure 4: PCR-sequencing chromatograms (A) Homozygous GG (B) Heterozygous GA

The data were analyzed using Microsoft Excel. Mean age, prevalence, genotype frequency, and allele frequency were calculated. The Ethical Committee approved the current study of the Liaquat University of Medical and Health Sciences, Jamshoro. Informed consent was obtained from each participant.

RESULTS

The mean age of participants was 21 years. FVL mutation was detected in 3 out of 100 healthy females, indicating the prevalence of 3% of our female population. Among 100 participants, three were found heterozygous for FVL mutation. Our study showed no homozygous AA genotype detection for FVL mutation (Table 1, Figure 5).

Table 1: Genotype and allele frequency of factor V Leiden among participants

<table>
<thead>
<tr>
<th>Genotype/Alleles</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GG</td>
<td>97(97)</td>
</tr>
<tr>
<td>GA</td>
<td>03(3)</td>
</tr>
<tr>
<td>AA</td>
<td>00(0)</td>
</tr>
<tr>
<td>G</td>
<td>197(98.5)</td>
</tr>
<tr>
<td>A</td>
<td>03(1.5)</td>
</tr>
</tbody>
</table>

A. Prevalence

Positive, 3%

Negative, 97%

B. Genotypes

GA, 3%

GG, 97%

C. Alleles

A1.5%

G98.5%

A

Figure 5: (A) Prevalence, (B) Genotype frequency, and (C) Allele frequency of factor V Leiden (FVL) mutation

Genotyping of FVL mutation by PCR-RFLP and tetra primer ARMS-PCR was concordant with PCR-sequencing in all samples, illustrating 100% concordance of all three methods for genotyping. PCR-RFLP and tetra primer ARMS-PCR methods prove to be 100% sensitive and specific for FVL mutation when compared with the gold standard confirmatory method of PCR.
sequencing.

Table 2 compares the three methods for cost, turnaround time, and analysis of a total number of samples simultaneously for FVL detection. Tetra primer ARMS-PCR was found as a cost-effective and fast method for detecting FVL mutation compared to PCR-RFLP and PCR-sequencing.

Table 2: Comparison of three methods for detection of factor V Leiden

<table>
<thead>
<tr>
<th>Method</th>
<th>Cost</th>
<th>Turnaround time</th>
<th>Number of samples analyzed at a time</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR-RFLP</td>
<td>7 USD</td>
<td>16 h 43 min</td>
<td>96</td>
</tr>
<tr>
<td>Tetra primer ARMS-PCR</td>
<td>4.5 USD</td>
<td>1 h 53 min</td>
<td>96</td>
</tr>
<tr>
<td>PCR sequencing</td>
<td>18 USD</td>
<td>2 days</td>
<td>04</td>
</tr>
</tbody>
</table>

Discussion

FVL has been related to thrombotic obstetric complications, and its screening has been given importance in females of reproductive age and on oral contraceptive pills [13, 14]. Our study reports a 3% prevalence of FVL mutation in healthy adult females of Sindh, Pakistan, which is comparatively higher than the prevalence detected in adult healthy males from Punjab (1%) and Pathan origin (1.5%) of Pakistan [15]. Another study reported in Pakistan for screening hereditary thrombophilia confirmed the presence of FVL in 14.2% of patients [16]. Kashif et al., found an association of FVL with recurrent pregnancy loss in Pakistani women [17]. Similarly, Saeed et al., [18] reported a frequency of 13% of FVL mutation in patients with deep venous thrombosis compared to controls. However, a recent study negated the association of FVL with adverse pregnancy outcomes in Pakistani women [19]. Initially thought to be the mutation of Caucasians, several studies have determined the FVL mutation. The survey conducted in the North-Eastern German population shows a high prevalence of 7.12% and allele frequency of 3.56% [20]. Another study conducted on healthy children in Germany also demonstrated an increased prevalence of 12% [21]. Similarly, in a study conducted on 665 healthy Hungarians, 43 heterozygous and three homozygous (6.47%) were found [22]. European Caucasians of the Mediterranean region have shown the heterozygosity ranging from as low 0 to 0.7% in the French/Spanish Basques population to as high as 9.5% and 13.1% in certain studies conducted on the healthy population of Italy [22]. Another large-scale study in France showed a prevalence to be 3.84% [23]. The presence of FVL was found to be rare among Japanese, Chinese, Korean, and Indonesian [24-27]. Similarly, a study from Southern Iran demonstrated 4.1% heterozygous and 0.02% of allele frequency [28]. In contrast, healthy Kuwaitis of Iranian origin revealed a prevalence of 6.42% [29]. A recent study reported 6.8% of FVL in patients with venous thromboembolism in Kashmiris [30], indicating its presence in non-Caucasians its importance in disorders associated with FVL mutation. Results from north India reported the prevalence of 3.16% and allele frequency of 1.58% [31]. Another study reported 1.9% allele frequency in India [32], whereas our study showed an allele frequency of 1.5%. In disagreement, Gupta et al., showed contradictory results and found a complete absence of an FVL mutation in North Indians in a case-control study [33]. The prevalence and allele frequency reported in European Caucasian studies are higher than the Asian population due to the large sample size, different geographical conditions, and study designs. In our second part of the study, we compared three methods to find a valid, more straightforward, and cost-effective method for genotyping and screening FVL mutation in developing countries. We found tetra primer ARMS-PCR rapid, economical, and more effortless than PCR-RFLP and PCR-sequencing. Compared to PCR-RFLP, Tetra primer ARMS-PCR requires less turnaround time and cost and does not require expensive equipment and technical skills, which are essential for DNA sequencing. Furthermore, a large number of samples can be detected and interpreted simultaneously by tetra primer ARMS-PCR and PCR-RFLP compared to sequencing. Although PCR-sequencing is the gold standard method for detecting various mutations, it is more suitable for the discovery of new variants rather than for screening [34]. In our study, two genotyping methods have been compared to PCR-sequencing that remove the chances of false-positive and false-negative results. Further PCR-sequencing also excludes the occurrence of other variations in proximity to the FVL mutation, such as silent mutation A1692C, which otherwise could produce false-positive results as indicated in certain studies [35]. PCR-RFLP involves the usage of MnlI restriction enzyme, which recognizes and cuts the specific sequence [36]. Restriction enzymes are used at particular sites, and the length of the fragments determines the presence of mutation or variation [37]. Whereas tetra primer ARMS-PCR requires four primers (two inners and two outers) in the same reaction incorporating deliberate mismatches at the 3′-terminal base and position 2 from 3′-terminus. The outer primers amplify the DNA sequence, whereas inner primers detect variations [38]. In our study, the results obtained from all three methods were in 100% concordance, ascertaining the tetra primer ARMS-PCR a reliable method for screening and genotyping.

Conclusions

In conclusion, the presence of FVL mutation in our population suggests screening of FVL among selective or high-risk individuals for developing thrombophilia and pregnancy complications. Tetra primer ARMS-PCR is a
reliable and economical method appropriate for screening FVL mutation in our setup. Further large-scale studies should be conducted to determine the association of FVL with associated disorders and obstetrical complications.

Authors Contribution

Conceptualization: FFK, YMW, AMW
Methodology: FFK, HR, RN
Formal Analysis: FFK, YMW
Writing-review and editing: FFK, YMW

All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

Source of Funding

The authors received no financial support for the research, authorship and/or publication of this article.

Funding

LUMHS, Jamshoro, Pakistan, funded the study.

REFERENCES

[17] Kashif S, Kashif MA, Saeed A. The association of...
Prevalence of Factor V Leiden Mutation
DOI: https://doi.org/10.54393/pjhs.v4i09.1007

