Role of Gut Microbiota in Immune System Regulation

Gut Microbiota in Immune System Regulation

Authors

  • Talia Attiq Department of Biotechnology, University of Health Sciences, Lahore, Pakistan
  • Amina Farrukh Alavi Department of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
  • Shahzaib Khan King Edward Medical University, Lahore, Pakistan
  • Fatima Najam King Edward Medical University, Lahore, Pakistan
  • Maleeha Saleem Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
  • Irum Hassan School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
  • Roomana Ali School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
  • Hameer Khan Khaskheli Department of Comparative Biomedicine and Food Science, University of Padova, Italy
  • Samran Sardar Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
  • Fiza Farooq Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan

DOI:

https://doi.org/10.54393/pjhs.v5i08.1904

Keywords:

Gut Microbiome, Immune System, Autoimmune Diseases, Dysbiosis, Probiotics

Abstract

The human gut is a densely populated organ system that bears hundreds of microbial species, including bacteria, viruses, and various protozoans. The gut microbiome expresses enormous functional diversity based on microbial community collection. However, this has remained unexplored for a long time, but in the recent past various researches have revealed its immense significance in host metabolism and immunity. Gut microbiota metabolize undigested substances and release various metabolites in response to microbial metabolism that have a significant effect on the immune system. The balance and stability of the immune system within the body are achieved and maintained through the complex interaction between the gut microbiota and the host mucosal immune system. Upon loss of control by the immune system, dysbiosis occurs, the modulation of the microbial community, which leads to different disorders, including inflammatory bowel disease and colorectal cancer. Moreover, dysbiosis is also associated with various autoimmune diseases such as rheumatoid arthritis, diabetes mellitus, and multiple sclerosis. Despite its intricate mechanism in autoimmune diseases, various therapeutic strategies are utilized to treat chronic diseases, including prebiotics treatment, personalized probiotics therapy, fecal microbiome transplantation, and narrow-spectrum antibiotic treatment. This review discusses the interaction of gut microbiome with the immune system, how this association becomes dysregulated, its various outcomes in the form of autoimmune diseases, and therapeutic interventions to cope with it.

References

Toader C, Dobrin N, Costea D, Glavan LA, Covache-Busuioc RA, Dumitrascu DI et al. Mind, Mood and Microbiota—Gut–Brain Axis in Psychiatric Disorders. International Journal of Molecular Sciences. 2024 Mar; 25(6): 3340. doi: 10.3390/ijms25063340. DOI: https://doi.org/10.3390/ijms25063340

Maritan E, Quagliariello A, Frago E, Patarnello T, Martino ME. The role of animal hosts in shaping gut microbiome variation. Philosophical Transactions of the Royal Society B. 2024 May; 379(1901): 20230071. doi: 10.1098/rstb.2023.0071. DOI: https://doi.org/10.1098/rstb.2023.0071

Zhang X, Qiao Y, Wang M, Liang X, Zhang M, Li C et al. The influence of genetic and acquired factors on the vulnerability to develop depression: a review. Bioscience Reports. 2023 May; 43(5): BSR20222644. doi: 10.1042/BSR20222644. DOI: https://doi.org/10.1042/BSR20222644

Kononova S, Litvinova E, Vakhitov T, Skalinskaya M, Sitkin S. Acceptive immunity: the role of fucosylated glycans in human host–microbiome interactions. International Journal of Molecular Sciences. 2021 Apr; 22(8): 3854. doi: 10.3390/ijms22083854. DOI: https://doi.org/10.3390/ijms22083854

Huus KE, Petersen C, Finlay BB. Diversity and dynamism of IgA− microbiota interactions. Nature Reviews Immunology. 2021 Aug; 21(8): 514-25. doi: 10.1038/s41577-021-00506-1. DOI: https://doi.org/10.1038/s41577-021-00506-1

Strugnell RA. When secretion turns into excretion–the different roles of IgA. Frontiers in Immunology. 2022 Dec; 13: 1076312. doi: 10.3389/fimmu.2022.1076312. DOI: https://doi.org/10.3389/fimmu.2022.1076312

Shao T, Hsu R, Rafizadeh DL, Wang L, Bowlus CL, Kumar N et al. The gut ecosystem and immune tolerance. Journal of Autoimmunity. 2023 Sep; 141: 103114. doi: 10.1016/j.jaut.2023.103114. DOI: https://doi.org/10.1016/j.jaut.2023.103114

Jans M and Vereecke L. A guide to germ‐free and gnotobiotic mouse technology to study health and disease. The FEBS Journal. 2024 Mar. doi: 10.1111/febs.17124. DOI: https://doi.org/10.1111/febs.17124

Gholamzad A, Khakpour N, Hashemi SM, Goudarzi Y, Ahmadi P, Gholamzad M et al. Exploring the virome: An integral part of human health and disease. Pathology-Research and Practice. 2024 Jul; 260: 155466. doi: 10.1016/j.prp.2024.155466. DOI: https://doi.org/10.1016/j.prp.2024.155466

Lu R and Luo XM. The role of gut microbiota in different murine models of systemic lupus erythematosus. Autoimmunity. 2024 Dec; 57(1): 2378876. doi: 10.1080/08916934.2024.2378876. DOI: https://doi.org/10.1080/08916934.2024.2378876

Zhang ML, Li WX, Wang XY, Wu YL, Chen XF, Tang JF et al. The role of gut microbes and their metabolites in immune-related diseases. 2023 Oct; 103.

Wang J, Zhu N, Su X, Gao Y, Yang R. Gut-microbiota-derived metabolites maintain gut and systemic immune homeostasis. Cells. 2023 Mar; 12(5); 793. doi: 10.3390/cells12050793. DOI: https://doi.org/10.3390/cells12050793

Kwao-Zigah G, Bediako-Bowan A, Boateng PA, Aryee GK, Abbang SM, Atampugbie G et al. Microbiome Dysbiosis, Dietary Intake and Lifestyle-Associated Factors Involve in Epigenetic Modulations in Colorectal Cancer: A Narrative Review. Cancer Control. 2024 Jun; 31: 10732748241263650. doi: 10.1177/10732748241263650. DOI: https://doi.org/10.1177/10732748241263650

Makarewicz M, Drożdż I, Tarko T, Duda-Chodak A. The interactions between polyphenols and microorganisms, especially gut microbiota. Antioxidants. 2021 Jan; 10(2): 188. doi: 10.3390/antiox10020188. DOI: https://doi.org/10.3390/antiox10020188

Cho JY, Liu R, Macbeth JC, Hsiao A. The interface of Vibrio cholerae and the gut microbiome. Gut Microbes. 2021 Jan; 13(1): 1937015. doi: 10.1080/19490976.2021.1937015. DOI: https://doi.org/10.1080/19490976.2021.1937015

Fang J, Wang H, Xue Z, Cheng Y, Zhang X. PPARγ: The central mucus barrier coordinator in ulcerative colitis. Inflammatory Bowel Diseases. 2021 May; 27(5): 732-41. doi: 10.1093/ibd/izaa273. DOI: https://doi.org/10.1093/ibd/izaa273

Calvo-Barreiro L, Zhang L, Abdel-Rahman SA, Naik SP, Gabr M. Gut microbial-derived metabolites as immune modulators of T helper 17 and regulatory T cells. International Journal of Molecular Sciences. 2023 Jan; 24(2): 1806. doi: 10.3390/ijms24021806. DOI: https://doi.org/10.3390/ijms24021806

Giacomini I, Gianfanti F, Desbats MA, Orso G, Berretta M, Prayer-Galetti T et al. Cholesterol metabolic reprogramming in cancer and its pharmacological modulation as therapeutic strategy. Frontiers in oncology. 2021 May; 11: 682911. doi: 10.3389/fonc.2021.682911. DOI: https://doi.org/10.3389/fonc.2021.682911

Senchukova MA. Microbiota of the gastrointestinal tract: Friend or foe?. World Journal of Gastroenterology. 2023 Jan; 29(1): 19-42. doi: 10.3748/wjg.v29.i1.19. DOI: https://doi.org/10.3748/wjg.v29.i1.19

Zhang Y, Zhang J, Duan L. The role of microbiota-mitochondria crosstalk in pathogenesis and therapy of intestinal diseases. Pharmacological Research. 2022 Dec; 186: 106530. doi: 10.1016/j.phrs.2022.106530. DOI: https://doi.org/10.1016/j.phrs.2022.106530

Wang S, Cui Z, Yang H. Interactions between host and gut microbiota in gestational diabetes mellitus and their impacts on offspring. BMC Microbiology. 2024 May; 24(1): 161. doi: 10.1186/s12866-024-03255-y. DOI: https://doi.org/10.1186/s12866-024-03255-y

Basso PJ, Gauthier T, Palomares F, López-Enríquez S, Tsai S. Immunometabolism: bridging the gap between immunology and nutrition. Frontiers in Nutrition. 2024 Jun; 11: 1436894. doi: 10.3389/fnut.2024.1436894. DOI: https://doi.org/10.3389/fnut.2024.1436894

González-Soltero R, Bailén M, de Lucas B, Ramírez-Goercke MI, Pareja-Galeano H, Larrosa M. Role of oral and gut microbiota in dietary nitrate metabolism and its impact on sports performance. Nutrients. 2020 Nov; 12(12): 3611. doi: 10.3390/nu12123611. DOI: https://doi.org/10.3390/nu12123611

Aljahdali NH, Sanad YM, Han J, Foley SL. Current knowledge and perspectives of potential impacts of Salmonella enterica on the profile of the gut microbiota. BMC Microbiology. 2020 Dec; 20: 1-5. doi: 10.1186/s12866-020-02008-x. DOI: https://doi.org/10.1186/s12866-020-02008-x

Álvarez-Herms J, González A, Corbi F, Odriozola I, Odriozola A. Possible relationship between the gut leaky syndrome and musculoskeletal injuries: the important role of gut microbiota as indirect modulator. AIMS Public Health. 2023 Aug; 10(3): 710. doi: 10.3934/publichealth.2023049. DOI: https://doi.org/10.3934/publichealth.2023049

Wicherska-Pawłowska K, Wróbel T, Rybka J. Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs) in innate immunity. TLRs, NLRs, and RLRs ligands as immunotherapeutic agents for hematopoietic diseases. International Journal of Molecular Sciences. 2021 Dec; 22(24): 13397. doi: 10.3390/ijms222413397. DOI: https://doi.org/10.3390/ijms222413397

Yue B, Luo X, Yu Z, Mani S, Wang Z, Dou W. Inflammatory bowel disease: a potential result from the collusion between gut microbiota and mucosal immune system. Microorganisms. 2019 Oct; 7(10): 440. doi: 10.3390/microorganisms7100440. DOI: https://doi.org/10.3390/microorganisms7100440

Jannuzzi GP, De Almeida JR, Paulo LN, De Almeida SR, Ferreira KS. Intracellular PRRs activation in targeting the immune response against fungal infections. Frontiers in Cellular and Infection Microbiology. 2020 Oct; 10 :591970. doi: 10.3389/fcimb.2020.591970. DOI: https://doi.org/10.3389/fcimb.2020.591970

Kumar N, Vyas A, Agnihotri SK, Chattopadhyay N, Sachdev M. Small secretory proteins of immune cells can modulate gynecological cancers. In Seminars in Cancer Biology. 2022 Nov; 86: 513-531. doi: 10.1016/j.semcancer.2022.02.008. DOI: https://doi.org/10.1016/j.semcancer.2022.02.008

A. Rahman NA, Balasubramaniam VR, Yap WB. Potential of Interleukin (IL)-12 Group as Antivirals: Severe Viral Disease Prevention and Management. International Journal of Molecular Sciences. 2023 Apr; 24(8): 7350. doi: 10.3390/ijms24087350. DOI: https://doi.org/10.3390/ijms24087350

Kumar V. Immune Homeostasis: Methods and Protocols. Atlanta GA, USA: Springer Nature; 2024. doi: 10.1007/978-1-0716-3754-8. DOI: https://doi.org/10.1007/978-1-0716-3754-8

Fernández-Tomé S, Ortega Moreno L, Chaparro M, Gisbert JP. Gut microbiota and dietary factors as modulators of the mucus layer in inflammatory bowel disease. International Journal of Molecular Sciences. 2021 Sep; 22(19): 10224. doi: 10.3390/ijms221910224. DOI: https://doi.org/10.3390/ijms221910224

Tsounis EP, Triantos C, Konstantakis C, Marangos M, Assimakopoulos SF. Intestinal barrier dysfunction as a key driver of severe COVID-19. World Journal of Virology. 2023 Mar; 12(2): 68-90. doi: 10.5501/wjv.v12.i2.68. DOI: https://doi.org/10.5501/wjv.v12.i2.68

Shemtov SJ, Emani R, Bielska O, Covarrubias AJ, Verdin E, Andersen JK et al. The intestinal immune system and gut barrier function in obesity and ageing. The Federation of European Biochemical Societies Journal. 2023 Sep; 290(17): 4163-86. doi: 10.1111/febs.16558. DOI: https://doi.org/10.1111/febs.16558

Chu J, Feng S, Guo C, Xue B, He K, Li L. Immunological mechanisms of inflammatory diseases caused by gut microbiota dysbiosis: A review. Biomedicine & Pharmacotherapy. 2023 Aug; 164: 114985. doi: 10.1016/j.biopha.2023.114985. DOI: https://doi.org/10.1016/j.biopha.2023.114985

Takeuchi T, Nakanishi Y, Ohno H. Microbial Metabolites and Gut Immunology. Annual Review of Immunology. 2024 Jun; 42(1): 153-78. doi: 10.1146/annurev-immunol-090222-102035. DOI: https://doi.org/10.1146/annurev-immunol-090222-102035

Gonzalez C, Williamson S, Gammon ST, Glazer S, Rhee JH et al. TLR5 agonists enhance anti-tumor immunity and overcome resistance to immune checkpoint therapy. Communications Biology. 2023 Jan; 6(1): 31. doi: 10.1038/s42003-022-04403-8. DOI: https://doi.org/10.1038/s42003-022-04403-8

Rivera CE, Zhou Y, Chupp DP, Yan H, Fisher AD, Simon R et al. Intrinsic B cell TLR-BCR linked coengagement induces class-switched, hypermutated, neutralizing antibody responses in absence of T cells. Science Advances. 2023 Apr; 9(17): eade8928. doi: 10.1126/sciadv.ade8928. DOI: https://doi.org/10.1126/sciadv.ade8928

Capitani N and Baldari CT. The immunological synapse: an emerging target for immune evasion by bacterial pathogens. Frontiers in Immunology. 2022 Jul; 13: 943344. doi: 10.3389/fimmu.2022.943344. DOI: https://doi.org/10.3389/fimmu.2022.943344

Zanna MY, Yasmin AR, Omar AR, Arshad SS, Mariatulqabtiah AR, Nur-Fazila et al. Review of dendritic cells, their role in clinical immunology, and distribution in various animal species. International Journal of Molecular Sciences. 2021 Jul; 22(15): 8044. doi: 10.3390/ijms22158044. DOI: https://doi.org/10.3390/ijms22158044

Duan T, Du Y, Xing C, Wang HY, Wang RF. Toll-like receptor signaling and its role in cell-mediated immunity. Frontiers in Immunology. 2022 Mar; 13: 812774. doi: 10.3389/fimmu.2022.812774. DOI: https://doi.org/10.3389/fimmu.2022.812774

Dicks LM and Vermeulen W. Bacteriophage–Host Interactions and the Therapeutic Potential of Bacteriophages. Viruses. 2024 Mar; 16(3): 478. doi: 10.3390/v16030478. DOI: https://doi.org/10.3390/v16030478

Li M, Huang X, Wen J, Chen S, Wu X, Ma W et al. Innate immune receptors co-recognition of polysaccharides initiates multi-pathway synergistic immune response. Carbohydrate Polymers. 2023 Apr; 305: 120533. doi: 10.1016/j.carbpol.2022.120533. DOI: https://doi.org/10.1016/j.carbpol.2022.120533

Nguyen NT, Jiang Y, McQuade JL. Eating away cancer: the potential of diet and the microbiome for shaping immunotherapy outcome. Frontiers in Immunology. 2024 May; 15: 1409414. doi: 10.3389/fimmu.2024.1409414. DOI: https://doi.org/10.3389/fimmu.2024.1409414

Adhikary S, Esmeeta A, Dey A, Banerjee A, Saha B, Gopan P et al. Impacts of gut microbiota alteration on age-related chronic liver diseases. Digestive and Liver Disease. 2024 Jan; 56(1): 112-22. doi: 10.1016/j.dld.2023.06.017. DOI: https://doi.org/10.1016/j.dld.2023.06.017

Khan I, Bai Y, Zha L, Ullah N, Ullah H, Shah SR et al. Mechanism of the gut microbiota colonization resistance and enteric pathogen infection. Frontiers in Cellular and Infection Microbiology. 2021 Dec; 11: 716299. doi: 10.3389/fcimb.2021.716299. DOI: https://doi.org/10.3389/fcimb.2021.716299

Fassarella M, Blaak EE, Penders J, Nauta A, Smidt H, Zoetendal EG. Gut microbiome stability and resilience: elucidating the response to perturbations in order to modulate gut health. Gut. 2021 Mar; 70(3): 595-605. doi: 10.1136/gutjnl-2020-321747. DOI: https://doi.org/10.1136/gutjnl-2020-321747

Ferrier S, Harwood TD, Ware C, Hoskins AJ. A globally applicable indicator of the capacity of terrestrial ecosystems to retain biological diversity under climate change: The bioclimatic ecosystem resilience index. Ecological Indicators. 2020 Oct; 117: 106554. doi: 10.1016/j.ecolind.2020.106554. DOI: https://doi.org/10.1016/j.ecolind.2020.106554

Chen H, Liu K, Yang E, Chen J, Gu Y, Wu S et al. A critical review on microbial ecology in the novel biological nitrogen removal process: Dynamic balance of complex functional microbes for nitrogen removal. Science of the Total Environment. 2023 Jan; 857: 159462. doi: 10.1016/j.scitotenv.2022.159462. DOI: https://doi.org/10.1016/j.scitotenv.2022.159462

Singh R, Zogg H, Wei L, Bartlett A, Ghoshal UC, Rajender S et al. Gut microbial dysbiosis in the pathogenesis of gastrointestinal dysmotility and metabolic disorders. Journal of neurogastroenterology and motility. 2021 Jan; 27(1): 19-34. doi: 10.5056/jnm20149. DOI: https://doi.org/10.5056/jnm20149

Ma J, Piao X, Mahfuz S, Long S, Wang J. The interaction among gut microbes, the intestinal barrier and short chain fatty acids. Animal Nutrition. 2022 Jun; 9: 159-74. doi: 10.1016/j.aninu.2021.09.012. DOI: https://doi.org/10.1016/j.aninu.2021.09.012

Wang H, Huang X, Tan H, Chen X, Chen C, Nie S. Interaction between dietary fiber and bifidobacteria in promoting intestinal health. Food chemistry. 2022 Nov; 393: 133407. doi: 10.1016/j.foodchem.2022.133407. DOI: https://doi.org/10.1016/j.foodchem.2022.133407

Colquhoun C, Duncan M, Grant G. Inflammatory bowel diseases: host-microbial-environmental interactions in dysbiosis. Diseases. 2020 May; 8(2): 13. doi: 10.3390/diseases8020013. DOI: https://doi.org/10.3390/diseases8020013

Duan H, Yu L, Tian F, Zhai Q, Fan L, Chen W. Antibiotic-induced gut dysbiosis and barrier disruption and the potential protective strategies. Critical Reviews in Food Science and Nutrition. 2022 Feb; 62(6): 1427-52. doi: 10.1080/10408398.2020.1843396. DOI: https://doi.org/10.1080/10408398.2020.1843396

Shaw C, Hess M, Weimer BC. Two-component systems regulate bacterial virulence in response to the host gastrointestinal environment and metabolic cues. Virulence. 2022 Dec; 13(1): 1666-80. doi: 10.1080/21505594.2022.2127196. DOI: https://doi.org/10.1080/21505594.2022.2127196

Mey AR, Gómez-Garzón C, Payne SM. Iron transport and metabolism in Escherichia, Shigella, and Salmonella. EcoSal Plus. 2021 Dec; 9(2): eESP-0034. doi: 10.1128/ecosalplus.ESP-0034-2020. DOI: https://doi.org/10.1128/ecosalplus.ESP-0034-2020

Koosha RZ, Fazel P, Sedighian H, Behzadi E, Ch MH, Fooladi AA. The impact of the gut microbiome on toxigenic bacteria. Microbial Pathogenesis. 2021 Nov; 160: 105188. doi: 10.1016/j.micpath.2021.105188. DOI: https://doi.org/10.1016/j.micpath.2021.105188

Hamilton-Williams EE, Lorca GL, Norris JM, Dunne JL. A triple threat? The role of diet, nutrition, and the microbiota in T1D pathogenesis. Frontiers in Nutrition. 2021 Apr; 8: 600756. doi: 10.3389/fnut.2021.600756. DOI: https://doi.org/10.3389/fnut.2021.600756

Yoo JY, Groer M, Dutra SV, Sarkar A, McSkimming DI, Yoo, JY. Gut Microbiota and Immune System Interactions. Microorganisms 2020, 8, 1587. Microorganisms. 2020 Dec; 8(12): 2046. doi: 10.3390/microorganisms8122046. DOI: https://doi.org/10.3390/microorganisms8122046

Kaur H and Ali SA. Probiotics and gut microbiota: Mechanistic insights into gut immune homeostasis through TLR pathway regulation. Food and Function. 2022 May; 13(14): 7423-47. doi: 10.1039/D2FO00911K. DOI: https://doi.org/10.1039/D2FO00911K

Afzaal M, Saeed F, Shah YA, Hussain M, Rabail R, Socol CT et al. Human gut microbiota in health and disease: Unveiling the relationship. Frontiers in Microbiology. 2022 Sep; 13: 999001. doi: 10.3389/fmicb.2022.999001. DOI: https://doi.org/10.3389/fmicb.2022.999001

Ge Y, Wang X, Guo Y, Yan J, Abuduwaili A, Aximujiang K et al. Gut microbiota influence tumor development and Alter interactions with the human immune system. Journal of Experimental & Clinical Cancer Research. 2021 Dec; 40: 1-9. doi: 10.1186/s13046-021-01845-6. DOI: https://doi.org/10.1186/s13046-021-01845-6

Rogala AR, Oka A, Sartor RB. Strategies to dissect host-microbial immune interactions that determine mucosal homeostasis vs. intestinal inflammation in gnotobiotic mice. Frontiers in Immunology. 2020 Feb; 11: 214. doi: 10.3389/fimmu.2020.00214. DOI: https://doi.org/10.3389/fimmu.2020.00214

Wiertsema SP, Van Bergenhenegouwen J, Garssen J, Knippels LM. The interplay between the gut microbiome and the immune system in the context of infectious diseases throughout life and the role of nutrition in optimizing treatment strategies. Nutrients. 2021 Mar; 13(3): 886. doi: 10.3390/nu13030886. DOI: https://doi.org/10.3390/nu13030886

Guo M, Tao W, Flavell RA, Zhu S. Potential intestinal infection and faecal–oral transmission of SARS-CoV-2. Nature Reviews Gastroenterology & Hepatology. 2021 Apr; 18(4): 269-83. doi: 10.1038/s41575-021-00416-6. DOI: https://doi.org/10.1038/s41575-021-00416-6

Fakharian F, Thirugnanam S, Welsh DA, Kim WK, Rappaport J, Bittinger K et al. The role of gut dysbiosis in the loss of intestinal immune cell functions and viral pathogenesis. Microorganisms. 2023 Jul; 11(7): 1849. doi: 10.3390/microorganisms11071849. DOI: https://doi.org/10.3390/microorganisms11071849

Utkurovna SG, Farkhodovna KF, Orifjonovna OF. Features of immune mechanisms in the development of pathological processes. Achievements of Science and Education. 2022; 2(82): 108-15.

Shaheen WA, Quraishi MN, Iqbal TH. Gut microbiome and autoimmune disorders. Clinical and Experimental Immunology. 2022 Aug; 209(2): 161-74. doi: 10.1093/cei/uxac057. DOI: https://doi.org/10.1093/cei/uxac057

Mansour SR, Moustafa MA, Saad BM, Hamed R, Moustafa AR. Impact of diet on human gut microbiome and disease risk. New Microbes and New Infections. 2021 May; 41: 100845. doi: 10.1016/j.nmni.2021.100845. DOI: https://doi.org/10.1016/j.nmni.2021.100845

Imbrea AM, Balta I, Dumitrescu G, McCleery D, Pet I, Iancu T et al. Exploring the Contribution of Campylobacter jejuni to Post-Infectious Irritable Bowel Syndrome: A Literature Review. Applied Sciences. 2024 Apr; 14(8): 3373. doi: 10.3390/app14083373. DOI: https://doi.org/10.3390/app14083373

Winiarska-Mieczan A, Tomaszewska E, Donaldson J, Jachimowicz K. The role of nutritional factors in the modulation of the composition of the gut microbiota in people with autoimmune diabetes. Nutrients. 2022 Jun; 14(12): 2498. doi: 10.3390/nu14122498. DOI: https://doi.org/10.3390/nu14122498

Greslehner GP. Not by structures alone: Can the immune system recognize microbial functions?. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences. 2020 Dec; 84: 101336. doi: 10.1016/j.shpsc.2020.101336. DOI: https://doi.org/10.1016/j.shpsc.2020.101336

Zouali M. B lymphocytes, the gastrointestinal tract and autoimmunity. Autoimmunity Reviews. 2021 Apr; 20(4): 102777. doi: 10.1016/j.autrev.2021.102777. DOI: https://doi.org/10.1016/j.autrev.2021.102777

Rocchi G, Giovanetti M, Benedetti F, Borsetti A, Ceccarelli G, Zella D et al. Gut microbiota and COVID-19: potential implications for disease severity. Pathogens. 2022 Sep; 11(9): 1050. doi: 10.3390/pathogens11091050. DOI: https://doi.org/10.3390/pathogens11091050

Drago L, Zuccotti GV, Romanò CL, Goswami K, Villafañe JH, Mattina R et al. Oral–gut microbiota and arthritis: is there an evidence-based axis?. Journal of Clinical Medicine. 2019 Oct; 8(10): 1753. doi: 10.3390/jcm8101753. DOI: https://doi.org/10.3390/jcm8101753

Brown J, Quattrochi B, Everett C, Hong BY, Cervantes J. Gut commensals, dysbiosis, and immune response imbalance in the pathogenesis of multiple sclerosis. Multiple Sclerosis Journal. 2021 May; 27(6): 807-11. doi: 10.1177/1352458520928301. DOI: https://doi.org/10.1177/1352458520928301

Balakrishnan B and Taneja V. Microbial modulation of the gut microbiome for treating autoimmune diseases. Expert Review of Gastroenterology & Hepatology. 2018 Oct; 12(10): 985-96. doi: 10.1080/17474124.2018.1517044. DOI: https://doi.org/10.1080/17474124.2018.1517044

Liu XW, Li HL, Ma CY, Shi TY, Wang TY, Yan D et al. Predicting the role of the human gut microbiome in type 1 diabetes using machine-learning methods. Briefings in Functional Genomics. 2024 Feb; 23(4): 464–474. doi: 10.1093/bfgp/elae004. DOI: https://doi.org/10.1093/bfgp/elae004

Heravi FS. Gut Microbiota and Autoimmune Diseases: Mechanisms, Treatment, Challenges, and Future Recommendations. Current Clinical Microbiology Reports. 2024 Jan; 11(1): 18-33. doi: 10.1007/s40588-023-00213-6. DOI: https://doi.org/10.1007/s40588-023-00213-6

He T and Qian W. Immunologic derangement caused by intestinal dysbiosis and stress is the intrinsic basis of reactive arthritis. Zeitschrift für Rheumatologie. 2024 Feb; 25:1-9. doi: 10.1007/s00393-024-01480-4. DOI: https://doi.org/10.1007/s00393-024-01480-4

Dopkins N, Becker W, Miranda K, Walla M, Nagarkatti P, Nagarkatti M. Tryptamine attenuates experimental multiple sclerosis through activation of aryl hydrocarbon receptor. Frontiers in Pharmacology. 2021 Jan; 11: 619265. doi: 10.3389/fphar.2020.619265. DOI: https://doi.org/10.3389/fphar.2020.619265

Akuzum B and Lee JY. Context-dependent regulation of type17 immunity by microbiota at the intestinal barrier. Immune Network. 2022 Dec; 22(6): e46. doi: 10.4110/in.2022.22.e46. DOI: https://doi.org/10.4110/in.2022.22.e46

Cardoso RF. Beyond Th1 and Treg: Intestinal T helper cells in disease and tolerance. Karolinska Institutet (Sweden); 2022.

Elson DJ and Kolluri SK. Tumor-suppressive functions of the aryl hydrocarbon receptor (AhR) and AhR as a therapeutic target in cancer. Biology. 2023 Mar; 12(4): 526. doi: 10.3390/biology12040526. DOI: https://doi.org/10.3390/biology12040526

Wu J, Wang S, Zheng B, Qiu X, Wang H, Chen L. Modulation of gut microbiota to enhance effect of checkpoint inhibitor immunotherapy. Frontiers in Immunology. 2021 Jun; 12: 669150. doi: 10.3389/fimmu.2021.669150. DOI: https://doi.org/10.3389/fimmu.2021.669150

Abdulla OA. Role of AhR Ligands in Immune Modulation to Suppress Inflammation Through the Regulation of Microrna and Gut Microbiome. 2021.

Jiao Y, Wu L, Huntington ND, Zhang X. Crosstalk between gut microbiota and innate immunity and its implication in autoimmune diseases. Frontiers in Immunology. 2020 Feb; 11: 282. doi: 10.3389/fimmu.2020.00282. DOI: https://doi.org/10.3389/fimmu.2020.00282

Topi S, Bottalico L, Charitos IA, Colella M, Di Domenico M, Palmirotta R et al. Biomolecular mechanisms of autoimmune diseases and their relationship with the resident microbiota: friend or foe?. Pathophysiology. 2022 Sep; 29(3): 507-36. doi: 10.3390/pathophysiology29030041. DOI: https://doi.org/10.3390/pathophysiology29030041

Hua Z and Hou B. The role of B cell antigen presentation in the initiation of CD4+ T cell response. Immunological reviews. 2020 Jul;296(1):24-35. doi: 10.1111/imr.12859. DOI: https://doi.org/10.1111/imr.12859

Ma R, Su H, Jiao K, Liu J. Role of Th17 cells, Treg cells, and Th17/Treg imbalance in immune homeostasis disorders in patients with chronic obstructive pulmonary disease. Immunity, Inflammation and Disease. 2023 Feb; 11(2): e784. doi: 10.1002/iid3.784. DOI: https://doi.org/10.1002/iid3.784

Ruff WE, Greiling TM, Kriegel MA. Host–microbiota interactions in immune-mediated diseases. Nature Reviews Microbiology. 2020 Sep; 18(9): 521-38. doi: 10.1038/s41579-020-0367-2. DOI: https://doi.org/10.1038/s41579-020-0367-2

Yazici D, Ogulur I, Kucukkase O, Li M, Rinaldi AO, Pat Y et al. Epithelial barrier hypothesis and the development of allergic and autoimmune diseases. Allergo Journal International. 2022 Jun; 31(4): 91-102. doi: 10.1007/s40629-022-00211-y. DOI: https://doi.org/10.1007/s40629-022-00211-y

Johnson D and Jiang W. Infectious diseases, autoantibodies, and autoimmunity. Journal of Autoimmunity. 2023 May; 137: 102962. doi: 10.1016/j.jaut.2022.102962. DOI: https://doi.org/10.1016/j.jaut.2022.102962

Kristyanto H, Blomberg NJ, Slot LM, van der Voort EI, Kerkman PF, Bakker A et al. Persistently activated, proliferative memory autoreactive B cells promote inflammation in rheumatoid arthritis. Science translational medicine. 2020 Nov; 12(570): eaaz5327. doi: 10.1126/scitranslmed.aaz5327. DOI: https://doi.org/10.1126/scitranslmed.aaz5327

Ivashkin V, Poluektov Y, Kogan E, Shifrin O, Sheptulin A, Kovaleva A et al. Disruption of the pro-inflammatory, anti-inflammatory cytokines and tight junction proteins expression, associated with changes of the composition of the gut microbiota in patients with irritable bowel syndrome. PLOS One. 2021 Jun; 16(6): e0252930. doi: 10.1371/journal.pone.0252930. DOI: https://doi.org/10.1371/journal.pone.0252930

Quaranta G, Guarnaccia A, Fancello G, Agrillo C, Iannarelli F, Sanguinetti M et al. Fecal microbiota transplantation and other gut microbiota manipulation strategies. Microorganisms. 2022 Dec; 10(12): 2424. doi: 10.3390/microorganisms10122424. DOI: https://doi.org/10.3390/microorganisms10122424

Hossein Javanmard G and Javanmard S. Exploring the Impact of Antibiotic Consumption on Cognitive Functions in Individuals with Altered Gut Microbiome: A Comparative Analysis. Journal of Pharmaceutical Care & Health Systems. 2024 Mar; 10(1): 311. doi: 10.35248/2376-0419.23.10.311.

Mauro D, Thomas R, Guggino G, Lories R, Brown MA, Ciccia F. Ankylosing spondylitis: an autoimmune or autoinflammatory disease?. Nature Reviews Rheumatology. 2021 Jul; 17(7): 387-404. doi: 10.1038/s41584-021-00625-y. DOI: https://doi.org/10.1038/s41584-021-00625-y

Kamareddine L, Najjar H, Sohail MU, Abdulkader H, Al-Asmakh M. The microbiota and gut-related disorders: insights from animal models. Cells. 2020 Nov; 9(11): 2401. doi: 10.3390/cells9112401. DOI: https://doi.org/10.3390/cells9112401

Montgomery TL, Künstner A, Kennedy JJ, Fang Q, Asarian L, Culp-Hill R et al. Interactions between host genetics and gut microbiota determine susceptibility to CNS autoimmunity. Proceedings of the National Academy of Sciences. 2020 Nov; 117(44) :27516-27. doi: 10.1073/pnas.2002817117. DOI: https://doi.org/10.1073/pnas.2002817117

Downloads

Published

2024-08-31
CITATION
DOI: 10.54393/pjhs.v5i08.1904
Published: 2024-08-31

How to Cite

Attiq, T., Farrukh Alavi, A., Khan, S., Najam, F., Saleem, M., Hassan, I., Ali, R., Khaskheli, H. K., Sardar, S., & Farooq, F. (2024). Role of Gut Microbiota in Immune System Regulation: Gut Microbiota in Immune System Regulation. Pakistan Journal of Health Sciences, 5(08), 02–12. https://doi.org/10.54393/pjhs.v5i08.1904

Issue

Section

Review Article

Plaudit