

PAKISTAN JOURNAL OF HEALTH SCIENCES

(LAHORE)

https://thejas.com.pk/index.php/pjhs ISSN (E): 2790-9352, (P): 2790-9344 Volume 6, Issue 10 (October 2025)

Original Article

Spectrum of Autoimmune Diseases in Children with Celiac Disease: A Single Center Cross-Sectional Study from A Tertiary Childcare Facility of South Punjab, Pakistan

Sundus Irshad¹, Irum Aslam¹, Abu Talib¹, Ghazi Khosa¹, Aslam Sheikh¹ and Saima Zahid¹

Department of Pediatrics Gastroenterology, Hepatology and Nutrition, The Children's Hospital and The Institute of Child Health, Multan, Pakistan

ARTICLE INFO

Keywords:

Asthma, Autoimmune Disease, Autoimmune Thyroiditis, Celiac Disease, Type-1 Diabetes Mellitus

Irshad, S., Aslam, I., Talib, A., Khosa, G., Sheikh, A., & Zahid, S. (2025). Spectrum of Autoimmune Diseases in Children with Celiac Disease: A Single Center Cross-Sectional Study from A Tertiary Childcare Facility of South Punjab, Pakistan: Spectrum of Autoimmune Diseases in Children with Celiac Disease. Pakistan Journal of Health Sciences, 6(10), 146-151. https://doi.org/10.54393/pjhs.v6i10.2826

*Corresponding Author:

Sundus Irshad

Department of Pediatrics Gastroenterology, Hepatology and Nutrition, The Children's Hospital and The Institute of Child Health, Multan, Pakistan drsundusirshad@gmail.com

Received Date: 1st February, 2025 Revised Date: 13th October, 2025 Acceptance Date: 25th October, 2025 Published Date: 31st October, 2025

ABSTRACT

Celiac disease (CD), an autoimmune disorder triggered by gluten ingestion, is increasingly recognized for its association with a higher prevalence of other autoimmune conditions in children, underscoring the need for more exploration. Objectives: To evaluate the spectrum of autoimmune diseases (AIDs) in children with CD. Methods: This cross-sectional study was performed at the Department of Gastroenterology, Hepatology and Nutrition, The Children's Hospital and The Institute of Child Health, Multan, Pakistan, from September 2023 to December 2024. Children aged between 1-12 years and having CD were analyzed. The presence of AIDs was explored utilizing physical and clinical examination, along with relevant laboratory and radiographic studies. Results: In a total of 167 children with CD, 95 (56.9%) were male. The mean age was 6.01 ± 3.31 years. The most frequent presenting complaints were abdominal pain, diarrhea, and weight loss, noted in 70 (41.9%), 65 (38.9%), and 53 (31.7%) children, respectively. AIDs were diagnosed in 38 (22.8%) children, while the most common AIDs were autoimmune thyroiditis, type-1 diabetes mellitus (T1DM), asthma, and autoimmune hepatitis, found in 11 (6.6%), 7 (4.2%), 4 (2.4%), and 4 (2.4%) children, respectively. Low monthly family income (p=0.013), or severe CD type (p=0.010), were found to have a significant association with AIDs. Conclusions: Children with CD have a high prevalence of associated AIDs, with autoimmune thyroiditis, T1DM, asthma, and autoimmune hepatitis being the most commonly observed $conditions. \ The severity of \ CD \ appears \ to \ be \ a \ contributing \ factor \ to \ the \ development \ of \ AIDs.$

INTRODUCTION

Celiac disease (CD) is a common autoimmune disorder triggered by the ingestion of gluten proteins found in wheat, barley, and rye [1]. CD is marked by the presence of anti-transglutaminase autoantibodies and damage to the intestinal villi. In children with other autoimmune diseases (AIDs), such as type 1 diabetes mellitus (T1DM), or thyroiditis, screening frequently uncovers previously undiagnosed CD, affecting approximately 5% to 10% of these pediatric patients [2, 3]. The prevalence of AIDs is significantly higher in children with CD [4, 5]. The interplay between CD and other autoimmune disorders appears to be bidirectional, with studies indicating an increased prevalence of AIDs in CD patients. However, the relationship remains largely associative rather than causal, as no definitive mechanistic link has been established. Prolonged gluten exposure in pediatric CD patients has been suggested as a potential contributor to the development of additional AIDs, though it remains unclear

whether gluten directly triggers these conditions or if underlying genetic and immunological factors predispose CD patients to autoimmunity [6]. Contemporary epidemiological evidence has indicated a significant rise in the prevalence of AIDs among CD patients [7]. Ventura et al. analyzing 909 patients of CD reported a 34% prevalence of AIDs, and proposed that prolonged gluten exposure may have contributed to factors influencing AIDs [8]. A study from Finland by Viljamaa et al. evaluating 703 CD patients revealed the prevalence of AIDs as 31%, while a French study analyzing 924 patients reported that to be 19.3% [9, 10]. These findings suggest a strong association, but they do not establish a direct causal relationship. Several potential mechanisms have been proposed to explain the coexistence of CD and AIDs, including shared genetic predisposition (such as HLA-DQ2 and HLA-DQ8 alleles), environmental triggers, dysregulated immune responses, impaired intestinal barrier function, and increased intestinal permeability. While these mechanisms support an immunopathological overlap, further research is needed to determine whether CD actively drives the onset of other AIDs or if both conditions arise independently due to common risk factors. Despite the well-documented association between CD and AIDs, there is a significant lack of regional data from South Punjab, Pakistan, where CD remains underdiagnosed and often presents late with complications. Most studies on this relationship come from Western populations, limiting their applicability to South Asian children due to genetic, environmental, and dietary differences. There are no region-specific screening guidelines for AIDs in CD patients, making it unclear which AIDs are most prevalent locally. The role of prolonged gluten exposure in AID development also remains debated, with limited pediatric-specific data exploring whether early diagnosis and strict dietary adherence influence AID risk. Given the increasing recognition of AIDs in CD, this study aims to address these gaps by determining the spectrum and prevalence of AIDs in children with CD, providing critical insights for early screening, targeted management, and localized clinical guidelines.

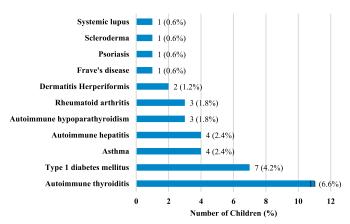
This study aims to evaluate the spectrum of AIDs in children with CD.

METHODS

This cross-sectional study was conducted at the Department of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital, and The Institute of Child Health, Multan, Pakistan, from September 2023 to December 2024. Children of either gender, aged between 1-12 years, and having CD were included. A sample size of 167 was calculated based on an estimated 19.3% prevalence of AIDs in CD, as reported in a French study [10]. This estimate

was selected due to the lack of region-specific data from South Punjab, Pakistan, and was considered relevant based on available international literature. A 6% margin of error was chosen to balance statistical precision with feasibility, ensuring adequate power to detect a meaningful prevalence estimate within the constraints of a singlecenter study. This approach allows for a robust yet practical sample size while maintaining a 95% confidence level for reliable estimates. The sample size was calculated using the online Open EPI sample size calculator. Children with acute on chronic liver disease (ALT > 40 IU/L), irrespective of the cause, were excluded. Children diagnosed with intestinal tuberculosis were also excluded. The CD was confirmed through small intestinal biopsy exhibiting mucosal alterations as per "Modified March Criteria" that involved partial to complete villous atrophy, crypt elongation with or without a rise in intraepithelial lymphocytes [11]. Approval for this study was obtained from the Institutional Ethical Committee (IEC) (letter number: ERC/2023/1644) of The Children's Hospital and The Institute of Child Health, Multan, Pakistan. The study was conducted in accordance with the ethical principles outlined in the Declaration of Helsinki and relevant institutional guidelines for research involving human subjects. Written informed consent was obtained from parents or legal quardians of all participating children before data collection. Participant confidentiality was ensured by anonymizing all data, using unique identification codes instead of personal identifiers, and restricting access to study records to authorized personnel only. Non-probability, consecutive sampling technique was utilized. Gender, age, residential status, family history of CD or AIDs, along with related gastrointestinal (GI) symptoms, were documented. The CD was labeled as mild to moderate between type 2 to 3a, while it was named severe if above type 3b to 4 [12]. Anemia was designated as hemoglobin below 11 g/dl [13]. Monthly family income was termed high if above PKR 65,000, middle if between 35,000 to 65,000, or low if below 35,000 [14]. The diagnosis of AIDs was made utilizing physical and clinical examination along with relevant laboratory and radiographic studies. Data were analyzed using IBM-SPSS Statistics, version 26.0. For age, the mean and standard deviation were calculated. Frequency and percentages were shown for gender, residence, socio-economic status, CD staging, family history of CD or AIDs, GI-related symptoms, and AIDs. Comparison of categorical data was made using the chi-square test, considering p<0.05 as significant.

RESULTS


In a total of 167 children with CD, 95(56.9%) were male and 72 (43.1%) female. The mean age was 6.01 ± 3.31 years,

ranging between 1 to 12 years. The residential status of 107 (64.1%) children was rural. The monthly family income was low in 95(56.9%) children. The CD stage evaluation revealed that 116 children belonged to mild to moderate disease. Family history of CD and AlDs was reported in 24(14.4%) and 63 (37.7%) children, respectively. The most frequent presenting complaints were abdominal pain, diarrhea, and weight loss, noted in 70 (41.9%), 65 (38.9%), and 53 (31.7%) children, respectively (Table 1).

Table 1: Demographics and Clinical Characteristics (n=167)

Characteristics		n(%)
Gender	Male	95 (56.9%)
	Female	72 (43.1%)
Age (Years)	1-5	91(54.5%)
	6-12	76 (45.5%)
Residence	Urban	60 (35.9%)
	Rural	107(64.1%)
Monthly Family Income	Low	95 (56.9%)
	Middle	49 (29.3%)
	High	23 (13.8%)
Celiac Disease Staging	Mild to Moderate	116 (69.5%)
	Severe	51(30.5%)
Family History of Celiac Disease		24 (14.4%)
Family History of Autoimmune Disease		63 (37.7%)
Anemi	Anemia	
	Abdominal pain	70 (41.9%)
	Diarrhea	65 (38.9%)
	Weight loss	53 (31.7%)
Fragues of Dragonting	Nausea and/or Vomiting	45 (26.9%)
Frequency of Presenting Symptoms/Complaints	Reflux	39 (23.4%)
	Constipation	26 (15.6%)
	Dyspepsia	26 (15.6%)
	Joint Pain	24 (14.4%)
	Fever	21(12.6%)

AlDs were diagnosed in 38 (22.8%) children with CD, while the most common autoimmune diseases were autoimmune thyroiditis, T1DM, asthma, and autoimmune hepatitis, found in 11(6.6%), 7(4.2%), 4(2.4%), and 4(2.4%) children, respectively. Findings are showing the details about the types of AlDs diagnosed among children with CD (Figure 1).

Figure 1: Types of Autoimmune Diseases Noted among Children with Celiac Disease (n=167)

No association of presence of AIDs was found with gender (p=0.886), age (p=0.081), residential status (p=0.198), family history of CD (0.195), or family history of AIDs (0.898). Low monthly family income (p=0.013), or severe CD type (p=0.010) were found to have a significant association with AIDs (Table 2).

Table 2: Association of Autoimmune Diseases with Demographic and Clinical Characteristics of Children with Celiac Disease (n=167)

Characteristics		Autoimmune disease		p-	
		Yes (n=38)	No (n=129)	Value	
Gender	Male	22 (57.9%)	73 (56.6%)	0.886	
	Female	16 (42.1%)	56 (43.4%)		
Age (Years)	1-5	16 (42.1%)	75 (58.1%)	0.081	
	6-12	22 (57.9%)	54 (41.9%)	0.081	
Residence	Urban	17(44.7%)	43 (33.3%)	0.198	
	Rural	21(55.3%)	86 (66.7%)		
Monthly Family Income	Low	22 (57.9%)	73 (56.6%)	0.013	
	Middle	6 (15.8%)	43 (33.3%)		
	High	10 (26.3%)	13 (10.1%)		
Celiac Disease Staging	Mild to Moderate	20 (52.6%)	96 (74.4%)	0.010	
	Severe	18 (47.4%)	33 (25.6%)		
Family History of Celiac Disease		3 (7.9%)	21(16.3%)	0.195	
Family History of Autoimmune Disease		14 (36.8%)	49 (38.0%)	0.898	
Anemia		8 (21.1%)	23 (17.8%)	0.653	
Frequency of Presenting Symptoms/ Complaints	Abdominal pain	15 (39.5%)	55(42.6%)	0.728	
	Diarrhea	12 (31.6%)	53 (41.1%)	0.291	
	Weight loss	12 (31.6%)	41 (31.8%)	0.981	
	Nausea and/ Vomiting	14 (36.8%)	31(24.0%)	0.118	
	Reflux	8 (21.1%)	31(24.0%)	0.703	
	Constipation	10 (26.3%)	16 (12.4%)	0.038	
	Dyspepsia	4 (10.5%)	22 (17.1%)	0.329	
	Joint Pain	11(28.9%)	13 (10.1%)	0.004	
	Fever	6 (15.8%)	15 (11.6%)	0.496	

DISCUSSION

In the present study, 22.8% children with CD had some kinds of AlDs, which means that nearly 1 in 5 children with

CD are exposed to other AIDs as well. Literature highlights some reports from Europe indicating a co-occurrence of CD with other autoimmune conditions. Contemporary data have consistently shown a distinct pattern exhibiting high prevalence rates of various AIDs in CD in comparison to controls [15-18]. As the risk of diverse AIDs is increasing worldwide, it is also anticipated to rise among CD patients as well [19]. The underlying cause for these associations could be the shared pathogenic autoimmune mechanisms or genetic defects in the same responsible genes. A study from Turkey analyzing patients with CD revealed that 31.3% patients had AIDs [12]. In a recently published study by Hajaj et al. from Morocco, analyzing 60 children with CD, found that 13% children had associated AIDs [20]. Khan et al. showed that 5% of CD patients after 5 years had de novo AIDs diagnosis versus 1.3% controls (p=0.01) [21]. A hallmark of active CD is the presence of antitransglutaminase antibodies, which often disappear when the patient adheres to a gluten-free diet. The underlying mechanisms linking CD and AIDs remain multifactorial, involving shared genetic predisposition (HLA-DQ2/DQ8), immune dysregulation, environmental triggers, and impaired intestinal barrier function. While molecular mimicry has been proposed as a mechanism where infectious agents trigger autoimmunity through crossreactivity with self-antigens, other potential contributors include chronic immune activation due to gut permeability, persistent systemic inflammation, and dysbiosis-driven immune modulation [22]. Further research is required to elucidate these pathways and their role in AID development in CD patients. In this study, autoimmune thyroiditis, T1DM, autoimmune hepatitis, and asthma were the most frequent AIDs. Kayar and Dertli documented that autoimmune thyroiditis, asthma, and T1DM were the most common AIDs among patients with CD [12]. Hajaj et al. found T1DM to be the most common AID among children with CD [20]. Cosnes et al. from France reported T1DM, autoimmune thyroiditis, and psoriasis to be the most frequent autoimmune diseases in patients with CD [10]. Dermatitis herpetiforms is considered to be the most common dermatological disorder in CD, and we found that it was found in 1.2% children with CD in this study [23]. A range of hepatobiliary disorders has been documented in individuals with CD. The first recognition of liver changes in CD patients and subsequent studies have confirmed these findings, showing that abnormal liver enzyme tests are present in 9-25% CD cases [24-26]. Mild liver enzyme abnormalities are frequently seen in individuals with CD and tend to improve or normalize when the patient adheres to a strict gluten-free diet. In cases where CD is accompanied by autoimmune liver diseases, the liver's histological findings are typically indicative of the specific liver condition involved, such as autoimmune hepatitis or primary biliary cholangitis, each with distinct pathological features [27]. This association underscores the importance of considering CD in the differential diagnosis of unexplained liver enzyme elevations, as timely diagnosis and dietary management can lead to significant improvements in liver function. While some studies suggest that a gluten-free diet may reduce the risk or severity of AIDs, particularly autoimmune thyroiditis and autoimmune hepatitis, the impact of dietary adherence on long-term AID prevalence remains controversial [28, 29]. Further studies are needed to establish whether strict gluten avoidance can prevent or mitigate AID onset in pediatric CD patients. The present study is the first one from the region showing the details of AIDs among children and may pave the way towards further research.

CONCLUSIONS

Children with CD have a high prevalence of associated AIDs, with autoimmune thyroiditis, T1DM, asthma, and autoimmune hepatitis being the most commonly observed conditions. The severity of CD appears to be a contributing factor to the development of AIDs. Future studies should focus on the long-term impact of CD severity and early intervention strategies to mitigate the risk of autoimmune comorbidities.

Authors Contribution

Conceptualization: AT

Methodology: SI, IA, GK, AS, SZ Formal analysis: GK, AS, SZ Writing review and editing: SI, AT

All authors have read and agreed to the published version of the manuscript

Conflicts of Interest

All the authors declare no conflict of interest.

Source of Funding

The author received no financial support for the research, authorship and/or publication of this article.

REFERENCES

- [1] Sharma N, Bhatia S, Chunduri V, Kaur S, Sharma S, Kapoor P et al. Pathogenesis of Celiac Disease and Other Gluten Related Disorders in Wheat and Strategies for Mitigating Them. Frontiers in Nutrition. 2020 Feb; 7: 6. doi: 10.3389/fnut.2020.00006.
- [2] Ergür AT, Öçal G, Berberoğlu M, Adıyaman P, Şıklar Z, Aycan Z et al. Celiac Disease and Autoimmune Thyroid Disease in Children with Type 1 Diabetes Mellitus: Clinical and HLA- Genotyping Results. Journal of Clinical Research in Pediatric Endocrinology. 2010 Nov; 2(4): 151. doi: 10.4274/jcrpe.v2i4.151.

- [3] AlNababteh AH, Tzivinikos C, Al-Shamsi S, Govender RD, Al-Rifai RH. Celiac Disease in Paediatric Patients in the United Arab Emirates: A Single-Center Descriptive Study. Frontiers in Pediatrics. 2023 Jul; 11: 1197612. doi: 10.3389/fped.2023.1197612.
- [4] Neuhausen SL, Steele L, Ryan S, Mousavi M, Pinto M, Osann KE et al. Co-Occurrence of Celiac Disease and Other Autoimmune Diseases in Celiacs and Their First-Degree Relatives. Journal of Autoimmunity. 2008 Sep; 31(2): 160-5. doi: 10.1016/j.jaut.2008.06.0 01.
- [5] Varol Fİ, Çamtosun E, Selimoğlu MA, Güngör Ş. Is There a Predictive Factor for an Association with Autoimmune Glandular Disease in Children Diagnosed with Celiac Disease? Journal of Clinical Research in Pediatric Endocrinology. 2022 Dec; 14(4): 409. doi: 10.4274/jcrpe.galenos.2022.2022-2-14
- [6] Sahin Y. Celiac Disease in Children: A Review of the Literature. World Journal of Clinical Pediatrics. 2021 Jul; 10(4): 53. doi: 10.5409/wjcp.v10.i4.53.

 Denham JM and Hill ID. Celiac Disease and Autoimmunity: Review and Controversies. Current Allergy and Asthma Reports. 2013 Aug; 13(4): 347-53. doi: 10.1007/s11882-013-0352-1.
- [7] Ventura A, Magazzù G, Greco L. Duration of Exposure to Gluten and Risk for Autoimmune Disorders in Patients with Celiac Disease. Gastroenterology. 1999 Aug; 117(2): 297-303. doi: 10.1053/gast.1999.0029900 297
- [8] Viljamaa M, Kaukinen K, Huhtala H, Kyrönpalo S, Rasmussen M, Collin P. Coeliac Disease, Autoimmune Diseases and Gluten Exposure. Scandinavian Journal of Gastroenterology. 2005 Apr; 40(4): 437-43. doi: 10.1080/00365520510012181.
- [9] Cosnes J, Cellier C, Viola S, Colombel JF, Michaud L, Sarles J et al. Incidence of Autoimmune Diseases In Celiac Disease: Protective Effect of the Gluten-Free Diet. Clinical Gastroenterology and Hepatology. 2008 Jul; 6(7): 753-8. doi: 10.1016/j.cgh.2007.12.022.
- [10] Belei O, Dobrescu A, Heredea R, Iacob ER, David V, Marginean O. Histologic Recovery among Children with Celiac Disease on A Gluten-Free Diet. A Long-Term Follow-Up Single-Center Experience. Archives of Medical Science. 2018 Jan; 14(1): 94-100. doi: 10.5114/aoms.2018.72241.
- [11] Kayar Y and Dertli R. Association of Autoimmune Diseases with Celiac Disease and Its Risk Factors. Pakistan Journal of Medical Sciences. 2019 Nov; 35(6):1548.doi:10.12669/pjms.35.6.821.
- [12] Addo OY, Emma XY, Williams AM, Young MF, Sharma AJ, Mei Z et al. Evaluation of Hemoglobin Cutoff

- Levels to Define Anemia Among Healthy Individuals. Journal of the American Medical Association Network Open. 2021 Aug; 4(8): e2119123-. doi: 10.1001/jamanetworkopen.2021.19123.
- [13] Devi P, Parkash A, Naeem B, Dilawar S, Kumar A, Memon NA. Frequency of Functional Gastrointestinal Disorders in Children with Recurrent Abdominal Pain. Liaquat National Journal of Primary Care. 2024; 6(2): 103-107.
- [14] Stahl M, Li Q, Lynch K, Koletzko S, Mehta P, Gragert L et al. Incidence of Pediatric Celiac Disease Varies by Region. Official journal of the American College of Gastroenterology. 2023 Mar; 118(3): 539-45. doi: 10.14309/ajg.00000000000002056.
- [15] Odeh R, Alassaf A, Gharaibeh L, Ibrahim S, Ahmad FK, Ajlouni K. Prevalence of Celiac Disease and Celiac-Related Antibody Status in Pediatric Patients with Type 1 Diabetes in Jordan. Endocrine Connections. 2019 Jun; 8(6): 780-7. doi: 10.1530/EC-19-0146.
- [16] Van der Pals M, Ivarsson A, Norström F, Högberg L, Svensson J, Carlsson A. Prevalence of Thyroid Autoimmunity in Children with Celiac Disease Compared to Healthy 12-Year Olds. Autoimmune diseases. 2014; 2014(1): 417356. doi: 10.1155/2014/417 356.
- [17] Rasheed J, Hassan R, Khalid M, Zafa.r F. Frequency of Autoimmune Thyroiditis in Children with Celiac Disease and Effect of Gluten Free Diet. Pakistan Journal of Medical Sciences. 2020 Sep; 36(6): 1280. doi: 10.12669/pjms.36.6.2226
- [18] Miller FW. The Increasing Prevalence of Autoimmunity and Autoimmune Diseases: An Urgent Call to Action for Improved Understanding, Diagnosis, Treatment, and Prevention. Current Opinion in Immunology. 2023 Feb; 80: 102266. doi: 10.1016/j.coi. 2022.102266.
- [19] Hajaj H, Elouali A, Hamami A, Babakhouya A, Rkain M. Celiac Disease and Autoimmune Diseases in a Pediatric Population in Morocco: A Cross-Sectional Study. Cureus. 2024 May; 16(5). doi: 10.7759/ cureus.61468.
- [20] Khan MR, Nellikkal SS, Barazi A, Larson JJ, Murray JA, Absah I. The Risk of Autoimmune Disorders in Treated Celiac Disease Patients in Olmsted County, Minnesota. Journal of Pediatric Gastroenterology and Nutrition. 2019 Oct; 69(4): 438-42. doi: 10.1097/ MPG.000000000000002418.
- [21] Trier NH and Houen G. Antibody Cross-Reactivity in Auto-Immune Diseases. International Journal of Molecular Sciences. 2023 Sep; 24(17): 13609. doi: 10.3390/ijms241713609.
- [22] Lebwohl B, Söderling J, Roelstraete B, Lebwohl MG, Green PH, Ludvigsson JF. Risk of Skin Disorders in

- Patients with Celiac Disease: A Population-Based Cohort Study. Journal of the American Academy of Dermatology. 2021 Dec; 85(6): 1456-64. doi: 10.1016 /j.jaad.2020.10.079.
- [23] Kim JV and Wu GY. Celiac Disease and Elevated Liver Enzymes: A Review. Journal of Clinical and Translational Hepatology. 2020 Dec; 9(1): 116. doi: 10.14218/JCTH.2020.00089.
- [24] Altay D and Doğan Y. Liver Involvement in Children during the Diagnosis of Celiac Disease: A Single-Center Experience from Turkey. Middle East Journal of Digestive Diseases. 2 022 Apr; 14(2): 200. doi: 10.34 172/mejdd.2022.273.
- [25] Regev A, Ben-Tov A, Yerushalmy-Feler A, Weintraub Y, Moran-Lev H, Cohen S et al. Elevated Liver Enzymes of Newly Diagnosed Pediatric Celiac Patients—A Prospective-Observational Study. European Journal of Pediatrics. 2022 Feb; 181(2): 753-62.doi:10.1007/s00431-021-04259-w.
- [26] Qiu ZX, Huang LX, Wang XX, Wang ZL, Li XH, Feng B. Exploring the Pathogenesis of Autoimmune Liver Diseases from the Heterogeneity of Target Cells. Journal of Clinical and Translational Hepatology. 2024 May; 12(7): 659.
- [27] Piticchio T, Frasca F, Malandrino P, Trimboli P, Carrubba N, Tumminia A et al. Effect of Gluten-Free Diet on Autoimmune Thyroiditis Progression in Patients with No Symptoms or Histology of Celiac Disease: A Meta-Analysis. Frontiers in Endocrinology. 2023 Jul; 14: 1200372. doi: 10.3389/fendo.2023.1200372.
- [28] Simón E, Molero-Luis M, Fueyo-Díaz R, Costas-Batlle C, Crespo-Escobar P, Montoro-Huguet MA. The Gluten-Free Diet for Celiac Disease: Critical Insights to Better Understand Clinical Outcomes. Nutrients. 2023 Sep; 15(18): 4013. doi: 10.3390/nu15184013.