
Review Article

The microbial community in the mammalian gut consists of 
a diverse range of microorganisms such as bacteria, 
viruses, fungi, and other microbes. The information 
obtained from analyzing 16S rRNA sequencing indicates 
that Firmicutes and Bacteroidetes account for around 92% 
of the human microbiome, while the total number of 
bacterial species in the gut microbiota is estimated to be 
between 1,000 and 1,500 [1]. However, an individual 
typically harbors around 160 bacterial species [2]. 
Environmental factors and genetic inheritance also 
in�uence the composition and functioning of the gut 
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microbiome. Mice with identical genotypes exhibit distinct 
microbiota con�gurations, in�uenced by diet, age, and 
in�ammation [3]. The intestinal microbiome is in�uenced 
by both the host's genetic makeup and developmental 
processes, with synchronized interactions affecting 
intestinal balance and immune system function [4]. The 
gut's immune system has multiple components that foster 
symbiotic relationships. The host provides nourishment for 
the microbiome, while gut microbiota strengthens the 
intestinal immune system. It produces immunoglobulin A 
(IgA), develops gut structures, and promotes tolerance to 

The human gut is a densely populated organ system that bears hundreds of microbial species, 

including bacteria, viruses, and various protozoans. The gut microbiome expresses enormous 

functional diversity based on microbial community collection. However, this has remained 

unexplored for a long time, but in the recent past various researches have revealed its immense 

signi�cance in host metabolism and immunity. Gut microbiota metabolize undigested 

substances and release various metabolites in response to microbial metabolism that have a 

signi�cant effect on the immune system. The balance and stability of the immune system within 

the body are achieved and maintained through the complex interaction between the gut 

microbiota and the host mucosal immune system. Upon loss of control by the immune system, 

dysbiosis occurs, the modulation of the microbial community, which leads to different 

disorders, including in�ammatory bowel disease and colorectal cancer. Moreover, dysbiosis is 

also associated with various autoimmune diseases such as rheumatoid arthritis, diabetes 

mellitus, and multiple sclerosis. Despite its intricate mechanism in autoimmune diseases, 

various therapeutic strategies are utilized to treat chronic diseases, including prebiotics 

treatment, personalized probiotics therapy, fecal microbiome transplantation, and narrow-

spectrum antibiotic treatment. This review discusses the interaction of gut microbiome with 

the immune system, how this association becomes dysregulated, its various outcomes in the 

form of autoimmune diseases, and therapeutic interventions to cope with it. 
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dietary antigens [5]. Additionally, it maintains bene�cial 
bacteria and protects against harmful pathogens through 
secretory IgA (SIgA) on mucosal surfaces. IgA functions as 
a primary barrier, preventing microorganisms from 
entering the epithelium [6]. It supports the complex 
interplay between commensal organisms, the epithelium, 
and the immune system. The gut microbiome and the 
immune system are responsible for regulating the mucosal 
ecosystem, but the disruption may have adverse effects on 
the gastrointestinal tract. Microbial colonization is crucial 
in the maturation of the immune system, as shown by 
studies on germ-free (GF) mice. These studies have 
demonstrated that the absence of gut microbiota leads to a 
notable impairment of the immune system [7, 8]. Moreover, 
the imbalance of gut microbiota has been strongly 
associated with various disorders, including obesity, type 2 
diabetes, hypertension, necrotizing enterocolitis (NEC), 
and in�ammatory bowel diseases (IBD), among others [9]. 
Moreover, various studies depict the involvement of gut 
microbiome in different autoimmune diseases. For 
example a reduction in the ratio of gut Firmicutes to 
Ba c t e r o i d e t e s  i n  p a t i e n t s  w i t h  sys te m i c  l u p u s 
erythematosus (SLE) [10]. Similarly, Porphyromonas 
g i n g i v a l i s  s e e m s  to  b e  a  p o te n t i a l  i n i t i a to r  o f 
anticitrullinated protein antibodies (ACPAs) from 
rheumatoid factor (RA) and a notable increase in the 
concentration of Lactobacillus in stool, while a decrease in 
Bacteroidetes [11]. 
In this article, we have focused on the interaction between 
the gut microbiome and the immune system of humans. 
Additionally, we explore the association of gut dysbiosis 
with the different autoimmune diseases and signi�cant 
�uctuations in the gut microbiome.
Mechanisms of Microbiota-Immune System Interaction
The relationship between gut microbiota and the immune 
system is a mutual and multifaceted process that implies 
the use of various pathways and mechanisms. 
Intestinal Epithelial Cells (IECs) and Short-Chain Fatty 
Acids (SCFAs)
Intestinal epithelial cells (IECs) control the immune 
response by passive and active methods and modify the 
nearby surroundings by recognizing and absorbing short-
chain fatty acids (SCFAs) [12]. The balance of the gut 
ecosystem is maintained by the predominance of 
Firmicutes and Bi�dobacteriaceae, which are obligate 
anaerobic bacteria. On the other hand, an increase in 
Enterobacteriaceae, which are facultative anaerobic 
bacteria, is a common indicator of gut dysbiosis, and 
unhealthy gut microbial composition. [13]. SCFAs facilitate 
the intracellular acidity of pathogens, hence protecting 
against pathogen infection. An essential role of propionate 
(It is a SCFA derived from the fermentation of dietary �ber 
by the gut microbiota mainly identi�ed as butyrate-

producing bacteria) is to restrict the growth of pathogens 
by promoting the acidi�cation of the cytoplasm in Shigella 
and Salmonella, which modulates the intracellular pH 
equilibrium of the pathogens. [14]. The increase in 
concentration of SCFAs results in a decrease in pH that 
impedes the process of oxygen (O2) and nitrate (NO3) 
respiration, which in turn reduces the growth of facultative 
anaerobic bacteria such as Enterobacteriaceae [15].
Role of Peroxisome Proliferator-Activated Receptor 
Gamma (PPAR-γ)
During normal conditions of gut homeostasis, the IEC 
produces peroxisome proliferator-activated receptor 
gamma (PPAR-γ), which is activated by butyrate [16]. The 
butyrate produced by commensal bacteria is metabolized 
by IECs that promote the production of transforming 
growth factor β (TGF-β) and ultimately the accumulation of 
regulatory T cells (Treg cells) in the gut [17]. PPAR-γ 
facilitated the maintenance of a localized oxygen-deprived 
s t a t e  b y  p r o m o t i n g  t h e  p r o c e s s  o f  o x i d a t i v e 
phosphorylation in colon cells [18] and the breakdown of 
SCFAs by the mitochondria through β-oxidation. SCFAs are 
produced by obligate anaerobic bacteria to make a suitable 
microenvironment for their growth, while the facultative 
anaerobic enteric pathogens experience inhibited growth 
[19]. Simultaneously, the activation of PPAR-γ reduces the 
levels of NOS2 in IEC, disrupting the production of both 
nitrate and inducible NO synthase, which are crucial energy 
sources for facultative anaerobic pathogens [20]. 
Furthermore, propionate confers resistance to the 
proliferation of harmful bacteria in a PPAR-γ independent 
manner, suggesting a parallel action of SCFAs [21].
Consequences of PPAR-γ Pathway Disruption
In contrast, blocking the PPAR-γ signaling pathway 
triggers changes in metabolism, disruption of the microbial 
balance in the gut, and depletion of SCFAs. This 
reprogramming stimulated the metabolic activity of 
colonocytes to shift towards anaerobic glycolysis, a 
phenomenon known as the Warburg effect [22]. As a result, 
the utilization of oxidative metabolism was restricted, 
leading to higher levels of lactate, nitrate, and oxygen in the 
lumen of the gut [23]. In addition, common virulence 
factors of Salmonella and Shigella, induce the recruitment 
of neutrophils across the epithelium, thus, decreasing 
SCFA levels [24]. It creates a detrimental feedback loop, 
promoting the proliferation of pathogens, and illustrating a 
cause-and-effect relationship between the metabolic 
activities of microbiota and the well-being of the gut 
epithelium [25]. 
The relationship between the gut microbiota and both the 
immune system and the development of autoimmunity. 
Many commensal bacterial-derived metabolites including 
SCFAs modulate the functionality of immune cells. 
Derangements in the composition of the gut microbiota 
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(e.g., higher levels of competitive gut pathogens) increase 
the permeability of the gut wall and thereafter, microbial 
antigens and microbial metabolites are translocated to 
system circulation. Such factors in combination with 
genetic and environmental factors, can underlie an 
abnormal immune reaction where there is activation of 
Th17 cells, B cell differentiation into plasma cells, and the 
production of autoantibodies. Some of the signaling 
species and pathways that are involved with this process 
encompass; IL-6, TGF-β, IL-10, PPAR-γ, AhR ligands, NOD, 
TLR ligands, and molecular mimicry (Figure 1)

Figure 1: Relationship Between the Gut Microbiota and the 

Development of Autoimmunity

Pattern Recognition Receptors (PRRs) and Immune 
Response
Host immune systems employ various strategies to prevent 
the colonization of pathogens. Generally, the bacteria are 
recognized in the host by two pattern recognition receptor 
(PRR) systems: the toll-like receptors and nucleotide-
binding oligomerization domain receptors (NODs) [26]. 
Various cells in the guts, like, IECs, macrophages, and 
dendritic cells express higher levels of PRR expression that 
can detect molecular patterns of pathogens and symbiotic 
microbes [27]. Once a microorganism has invaded the 
epithelium, the immune system initiates a speci�c immune 
response directed against the microorganism. When 
PAMPs are detected, pattern recognition receptors (PRRs) 
initiate multiple intracellular signaling pathways involving 
transcription factors, ligands, and kinases to evaluate the 
presence of infection in the host [28]. This signaling leads 
to modi�cations in gene expression, resulting in changes in 
the levels of various anti-microbial and pro-in�ammatory 
cytokines, chemokines, and immunoreceptors [29]. The 
protective bene�ts seen were attributed to a reduction in 
the levels of pro-in�ammatory cytokines, speci�cally IL-8, 
IL-12, and IL-23 [30]. This reduction was accompanied by 
an increase in the levels of anti-in�ammatory cytokines, 
particularly IL-1s produced by Treg cells. Dendritic cells 
present the antigen to naive T-cells which provoke the 
generation of anti-in�ammatory cytokines, leading to the 

establishment of both systemic and local tolerance [31].
Gut Permeability and Immune System Interaction
The composition of gut microbial communities varies 
throughout the gastrointestinal tract and different mucus 
layers. The immunological activity in the duodenum is 
signi�cantly lower than in the ileum and colon [32]. 
However, the presence of enteric microorganisms in the 
gut evokes an increase in permeability, allowing large 
molecules and antigens to be absorbed from the gut into 
the bloodstream [33]. The permeability of the gut is 
strongly associated with both the commensal microbiota 
and components of the mucosal immune system [34]. It is 
affected by various causes, such as modi�cations to 
mucus layers,  injur y to the epithelial  cel ls,  and 
abnormalities in the composition of gut bacteria [35]. The 
products of fermentation by gut microbes and the 
components of cells are crucial in the immunological 
responses of the host that help preserve the integrity of the 
epithelium [36]. Flagellin is the primary constituent of 
bacterial �agellum which is recognized by TLR-5. In 
response to the recognition, bacteria enhance the 
expression of TLR-5 agonist which is further recognized by 
the B cells and CD4+ T-cells [37]. The activation of naïve B 
cells stimulates the differentiation into mature B 
lymphocytes that produce higher titers of IgA. Fully 
differentiated IgA speci�cally attached to microbial 
antigens and e�ciently neutralizes the pathogens [38].
Pathogen Recognition and Response
Pathogenic bacteria inhibit the movement of phagocytes, 
which leads to the transmission of bacterial antigens to 
surrounding lymphoid tissues that trigger B-cell and T-cell 
activation [39]. Furthermore, pathogens stimulate 
dendritic cells and macrophages to generate pro-
in�ammatory cytokines. Consequently, the activation of 
pro-in�ammatory immune responses occurs via the 
differentiation of naive T cells [40]. The activation of 
various Toll-like receptor (TLR) members is associated with 
the recognition of lipopolysaccharide (LPS) in gram-
negative bacteria. Mammalian cells recognize LPS as a sign 
of bacterial invasion and use it to trigger innate immune 
responses [41]. The polysaccharide component of LPS 
serves as a protective strategy for bacteria, aiding in the 
prevention of complement assaults and allowing them to 
camou�age themselves among the carbohydrate residues 
of the host [42]. The TLR4/MD-2 complex after recognizing 
LPS, triggers various signal transduction pathways to 
activate the innate immune response in the host [43]. 
Nevertheless, the proliferation of probiotics that produce 
SFCAs had a considerable effect on the population of 
gram-negative bacteria, resulting in a subsequent 
reduction in LPS [44].
Dysbiosis and Immune Dysregulation
The gut microbiota of any individual is constantly changing 
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due to factors such as age, nutrition, medication, and 
geographical location. The majority of bacteria are 
introduced into the body by exposure to the environment 
[45]. However, certain bacteria are temporary and cannot 
permanently establish themselves in the intestinal 
environment. These bacteria are either unable to compete 
with other bene�cial microbes or are unable to adapt to the 
conditions of the intestines [46]. 
Assessment of Gut Microbiota Health
The assessment of the health of the microbiota in an 
individual can be determined based on its diversity, 
stability, resilience, and resistance [47]. So, it assesses the 
biodiversity of the ecosystem, its susceptibility to changes 
in composition and function, and its ability to restore itself 
to its initial condition [48]. Consequently, the equilibrium of 
the microbial ecology might be disrupted due to a decrease 
in variety, proliferation of harmful microorganisms, or 
decline of bene�cial microorganisms [49].
Characteristics and Causes of Dysbiosis
Gut dysbiosis is characterized by alterations in the 
composition and functional capacity of the gut bacteria, 
resulting in detrimental consequences on the overall 
health of the host [50]. Commensal bacteria suppress the 
growth of opportunistic infections by producing SCFAs, 
which modify the pH of the intestines [51]. For instance, 
Bi�dobacterium decreased the pH in the intestines while 
fermenting lactose, therefore inhibiting the growth of 
harmful Escherichia coli  [52]. Various causes can 
contribute to dysbiosis, such as the presence of invasive 
intestinal pathogens, the use of antibiotics, physical harm 
to the mucosa, dietary choices, and genetic factors in the 
host [53]. 
Effects of Dysbiosis
Dysbiosis has increased vulnerability to enteric infection, 
and disruption of the commensal microbiota composition 
caused in�ammation when antibiotics were used [54]. 
Commensal bacteria not only limit the virulence of 
diseases by altering the environment, but they also directly 
inhibit the expression of virulence genes in pathogens by 
releasing various metabolites [55]. Shigella �exneri relies 
on oxygen to effectively release virulence factors, but the 
other bacteria that live in the gut, take up the remaining 
oxygen [56]. As a result, the levels of Shigella virulence 
factors in the gut are reduced. In cases of gut dysbiosis in 
humans and mice, there is typically a drop in the prevalence 
of obligatory anaerobes, while the presence of potentially 
harmful facultative anaerobes such as Shigella, Salmonella, 
E. coli, Proteus, and Klebsiella [57] tends to increase 
Dysbiosis does not necessarily entail an escalation in the 
prevalence of pathogens, as the absence of crucial 
commensal bacteria alone might have detrimental effects 
[58]. 

Dysbiosis Without Pathogen Increase
Dysbiosis commonly arises when bacterial proliferation is 
reduced, in contrast to the growth of potentially harmful 
bacteria. Depleted commensals play signi�cant roles, and 
restoring the absent microorganisms or their metabolites 
can potentially modify the characteristics linked to the 
disturbed gut [59]. The interaction between the immune 
system and gut microbiota is highly signi�cant, as 
commensal bacteria strengthen the protective lining of the 
gut and stimulate the natural defense mechanisms of the 
body against harmful pathogens [60]. 
Interaction Between the Immune System and Gut 
Microbiota
The signi�cance of diversity and abundance of gut 
microbiota in maintaining the health of the host has been 
con�rmed, and alterations in diversity have been 
associated with several human disorders [61]. The extent 
to which the microbiota directly contributes to the 
development of all related disorders is yet uncertain. 
Dysbiosis and Disease Correlation
Numerous studies have demonstrated that gut bacteria 
play a direct role in the development and progression of 
some diseases using an intricate network that connects 
metabolism and the immune systems of the host [62]. The 
correlation between mucosal in�ammation and gut 
dysbiosis may be con�ned to dysbiosis only, or its 
associated disease, or simultaneous effect on both. The 
gut microbiota exhibited a signi�cant correlation with the 
initiation and progression of in�ammation in the mucosal 
layers of mice that were devoid of microorganisms [63]. 
Infections and Dysbiosis
Infections are a frequently reported factor that can lead to 
gut dysbiosis, as seen in both human and animal studies. 
Infectious diseases and their treatments have an impact on 
the human gut microbiota, leading to feedback loops that 
modify the nearby surroundings [64] and eventually, 
determine the in�uence of the infection on the host 
bacteria. Multiple investigations have con�rmed the strong 
associations between infection and gut dysbiosis, 
establishing links with both gut bacteria and resident 
viruses [65]. For instance, patients with Clostridium 
di�cile infection had substantial changes in their gut 
microbiota, which actively facilitated the advancement of 
the hepatitis B virus (HBV), the human immunode�ciency 
virus (HIV), and various other infectious disorders [66].
Gut-microbiota and Autoimmune Diseases
Autoimmune disorders are distinguished by the abnormal 
generation of autoantibodies. The immune system is 
in�uenced by both genetic and environmental variables, 
which result in the abnormal development of B cells that 
produce autoantibodies, T cells that react against the 
b o d y 's  c e l l s ,  a n d  t h e  e xc e s s i v e  p r o d u c t i o n  o f 
proin�ammatory cytokines [67]. Various studies depict 
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that the increase in the prevalence of autoimmune 
diseases can be attributed to signi�cant alterations in the 
gut microbiota [68], which are caused by several factors 
such as extensive use of antibiotics and an imbalanced diet 
[69].
A Complex Relationship between Gut Microbiota and 
Autoimmune Disorders
The gut microbiota has a signi�cant role in starting and 
intensifying the progression of disease in individuals with 
autoimmune disorders. Possible processes encompass 
molecular mimicry, effects on the mucosal permeability of 
the gut, the microbiota-stimulated immunological 
response, and antigenic mimicry [70]. Therefore, changes 
and �uctuations in microbial communities are always 
associated with host health and their signi�cant 
involvement in autoimmune disorders [71]. The gut 
microbiome can impact immunological  sense in 
distinguishing between self and non-self, perhaps playing a 
role in the development of autoimmune disorders [72]. 
Individuals suffering from autoimmune disorders 
frequently exhibit indications of compromised intestinal 
barriers, leading to potential immune system exposure to 
bene�cial gut �ora [73]. Furthermore, a disruption in the 
body's ability to tolerate the presence of the gut microbiota 
results in abnormal and harmful immunological reactions, 
ultimately worsening the severity of the disease [74].
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Table 1: Gut Microbiota associated with various Autoimmune 

Diseases

Refer-
ences

Rheumatoid Arthritis

Multiple Sclerosis

In�ammatory Bowel
Disease (IBD)

Type 1 Diabetes

Prevotella copri, Lactobacillus spp.

Akkermansia muciniphila,
Acinetobacter calcoaceticus

Bacteroides fragilis,
Faecalibacterium prausnitzii

[75]

[76]

[77]

[78]

[79]

Gut Microbiota Involved
Autoimmune

Disease

Bi�dobacterium spp., Firmicutes

Systemic Lupus
Erythematosus

Lactobacillus reuteri, Ruminococcus
gnavus

Molecular Mechanisms
Genetic and Environmental In�uences
Autoimmune diseases are in�uenced by both genetic and 
e n v i r o n m e n t a l  v a r i a b l e s ,  s u c h  a s  c o m p l i c a te d 
geographical location, genetic elements, immunologic 
derangement, patient exposure, and viral infections [80]. 
Aryl Hydrocarbon Receptor (AhR)
Aryl hydrocarbon receptor (AhR) may have a role in 
autoimmune diseases by attaching various cellular, 
dietary, and microbe-derived substances and converting 
external and internal signals into cellular responses [81]. 
Likewise, lower levels of innate IL-22 in AhR-de�cient 
animal models led to an increase in commensal segmented 
�lamentous bacteria (SFB) (an immune activator) and the 
growth of Th17 cells [82]. The inherent manifestation of 
AhR has a defensive function in T-cell-driven experimental 

colitis by inhibiting the development of harmful Th17 cells 
[83]. Various AhR ligands, such as 2,3,7,8-tetrachloro 
dibenzo-p-dioxin (TCDD) cause changes [84] in the 
microbial communities of Bacteroides fragilis (an immune 
suppressor) and SFB in mice when compared to levels 
observed in a typical gut microbiota [85]. Furthermore, the 
host response triggered by TCDD was greatly in�uenced by 
the presence of SFB in the gut microbiome, indicating a 
potential therapeutic relationship between AhR ligands 
and important commensal microorganisms [86].
Dysbiosis and Immune Dysregulation 
The presence of an imbalanced gut microbiota has been 
recognized as a potential cause of autoimmune disorders 
[87]. These diseases are believed to be in�uenced by 
various variables in humans, although the speci�c role of 
the gut microbiota is still not fully understood. The 
association between an imbalance in gut microbiota and 
autoimmune diseases can be ascribed to various 
mechanisms that can impact the operation and reaction of 
the human immune system [88]. With the stimulation of 
antigen-presenting cells and host immune responses, it is 
possible to induce antigen presentation and the generation 
of cytokines, which can then impact the differentiation and 
function of T cells [89]. In addition, this in�uence disturbs 
the balance between T regulatory cells (Tregs) and T helper 
17 (Th17) cells in homeostasis [90]. The gut microbiota 
contributes to autoimmunity by modifying autoantigens at 
the molecular level through posttranslational modi�cation 
and exhibiting cross-reactivity with autoantigens [91]. The 
movement of living gut bacteria through a malfunctioning 
gut barrier at the cellular level leads to direct contact with 
immunological and tissue cells, which in turn triggers 
systemic autoimmunity [92].
Molecular Mimicry and Antigen Presentation
Antigenic mimicry can cause foreign antigens to resemble 
self-antigens, leading to the activation of autoreactive T 
and B lymphocytes generated by infections [93]. This 
activation has the potential to facilitate the progression of 
autoimmunity [94]. However, the permeability of the 
intestinal mucosa is altered as a result of the modi�cation 
of tight junction protein expression [95].
Therapeutic Approaches and Implications
Based on several researches, the administration of 
prebiotics, probiotics, antimicrobial compounds, and fecal 
microbiota transplantation (FMT) can effectively control 
the composition of the gut microbiota [96]. Nevertheless, 
there is a correlation between improper antibiotic usage 
and the alteration of gut microbiota composition. This 
correlation also extends to non-antibiotic medications that 
are intended for human use [97]. Accumulating empirical 
and medical evidence has indicated that the persistent 
in�ammatory reaction caused by an imbalance in gut 
microbiota might signi�cantly contribute to the onset of 
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